• Исследования Луны
  • Исследования Меркурия
  • Исследования Венеры
  • Исследования Марса
  • Большие планеты
  • РЕЗУЛЬТАТЫ РАДИОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ

    К настоящему времени космические аппараты побывали на поверхности Луны, Марса и Венеры, исследовали с пролетной траектории или с орбиты искусственных спутников Луну, Венеру, Меркурий, Марс и Юпитер. С помощью большинства этих космических аппаратов проводились и радиофизические эксперименты.

    Рассмотрим некоторые их результаты.

    Исследования Луны

    Из-за своей относительной близости к Земле Луна наиболее полно была изучена как наземными, так и космическими средствами, в том числе и радиофизическими методами.

    Одним из первых радиофизических методов при исследовании Луны стала применяться радиолокация. На рис. 6 представлены результаты определения характеристик отражения грунтом поверхностного слоя Луны, полученные с помощью американских станций «Сервейер-6 и -7». Их сопоставление показывает, что горный (материковый) район в окрестностях лучевой системы кратера Тихо («Сервейер-7») создает значительно более широкую диаграмму обратного рассеяния, что соответствует большей степени шероховатости рельефа по сравнению с рельефом морского района.

    Рис. 6. Удельная эффективная площадь рассеяния Луны по данным: а) «Сервейера-6» и б) «Ссрвейера-7»

    В табл. 1 приведены результаты обработок проведенных моностатических радиолокационных экспериментов. Данные этой таблицы, в частности, показывают, что в районах, исследованных группой ученых Института космических исследований АН СССР с помощью автоматических станций серии «Луна» (на длине волны 3 см), в слое толщиной до 50 см эффективная диэлектрическая проницаемость варьируется от 1,7 до 5,7, что соответствует плотности грунта ? = 0,68 — 2,63 г/см3. Значения среднеквадратичных углов наклона в этих районах изменяются от 8,5 до 13,5°.

    Измерения на более короткой длине волны (2,3 см), выполненные на АС серии «Сервейер» группой ученых Лаборатории реактивного движения, также подтвердили сильное изменение свойств поверхности и подповерхностного слоя в зависимости от района измерения.

    Таблица 1


    В табл. 1 также приведены результаты измерения характеристик отражения для двух районов лунной поверхности, выполненных с борта станции «Луна-19».

    Измерения, проводившиеся на «Луне-19», отличались по методике от измерений, выполненных на других автоматических станциях серии «Луна», осуществивших посадку на поверхности Луны. На борту искусственного спутника Луны «Луна-19» был установлен радиовысотомер с антенной, которая могла поворачиваться относительно корпуса автоматической станции. Это позволило использовать «Луну-19» для измерения диаграммы обратного рассеяния локальных участков поверхности. В процессе полета антенна радиовысотомера разворачивалась в плоскости орбиты станций, что позволило для двух смежных участков трассы полета вблизи кратера Рюмкер исследовать характеристики отражения радиоволн поверхностью. Оказалось, что эти два близкорасположенных участка, лежащие по обе стороны от глубокого разлома, имеют отличающиеся характеристики — они различаются как по эффективной диэлектрической проницаемости, так и по значению среднеквадратичных углов наклон.

    Подобный по методике эксперимент был затем также проведен на искусственном спутнике «Луна-22».

    На большинстве автоматических станций, осуществивших посадку на лунную поверхность, были проведены измерения физико-механических параметров характеристик грунта. Среди этих параметров была определена и плотность грунта. Так как на этих же автоматических станциях на участке посадки обычно проводились и радиолокационные эксперименты, то это позволило сопоставить[4] данные измерения плотности грунта, определенной в одном районе различными методами (рис. 7).

    При исследовании Луны нашли применение два контактных метода определения плотности грунта: метод измерения несущей способности и метод измерения коэффициента рассеяния ?-квантов или ?-частиц. Первый основан па связи несущей способности с плотностью грунта. Второй — на связи интенсивности потока вторичного излучения грунта при его облучении ?-квантами или ?-частицами с величиной плотности этого грунта. На Луне первый метод использовался на станциях «Луна-17» («Луноход-1»), «Луна-21» («Луноход-2»), «Сервейер-1, -3, -5, -6, -7», второй — на автоматических станциях «Луна-13» (?-плотномер) и «Сервейер-7» (?-плотномер).

    Рис. 7. Плотность грунта лунной поверхности по результатам, полученным одновременно механическими и радиолокационными методами с помощью станций «Луна» (заштрихованные треугольники) и «Сервейер» (кружочки)

    Сопоставление данных по определению плотности грунта контактными и дистанционными методами позволило сделать ряд важных выводов. Эти методы измерений дали близкие результаты. Была определена поверхностная плотность лунного грунта (плотность первого сантиметра в глубину от поверхности), которая в среднем оказалась равной 1,2 г/см3. Эта величина соответствует плотности измельченного лунного грунта при его насыпании без уплотнения (при имитации лунных условий в земной лаборатории). В разных районах Луны величина поверхностной плотности колеблется от 0,6 до 3 г/см3.

    В результате совместного анализа результатов контактных и дистанционных измерений плотности грунта было показано, что она экспоненциально возрастает с глубиной. Это позволило определить толщину переработанного метеоритной бомбардировкой верхнего покрова Луны. В разных районах величина такого слоя оказалась существенно различной, колеблясь от 40 см до 40 м (при среднем значении этой величины равной 5 м). Рис. 7. Плотность грунта лунной поверхности по результатам, полученным одновременно механическими и радиолокационными методами с помощью станций «Луна» (заштрихованные треугольники) и «Сервейер» (кружочки)

    При полете почти всех космических аппаратов, выведенных на орбиту вокруг Луны, проводилась бистатическая радиолокация. При этом на космических аппаратах использовались различные методы модуляции и различные длины волн излучаемых сигналов, а также разные методики обработки принятых сигналов. Все эксперименты проводились по схеме, в которой передатчик размещался на борту искусственного спутника Луны (ИСЛ), а прием и обработка прямого и отраженного сигналов осуществлялись на наземном измерительном пункте.

    Первый эксперимент по бистатической радиолокации был проведен в 1966 г. на ИСЛ «Луна-10» группой ученых из Института космических исследований АН СССР под руководством Н. Н. Крупенио на длине волны 1,7 м с импульсной модуляцией сигнала передатчика. Последующие эксперименты на аппаратах серий «Луна» и «Аполлон», а также на ИСЛ «Лунар Орбитер-1» и «Эксплорер-35», проводились с непрерывным излучением передатчика. На ИСЛ «Луна-22» была впервые применена частотная модуляция сигнала передатчика. Использование такой модуляции позволило при обработке отраженных сигналов измерить дальность от ИСЛ до района отражений на поверхности и получить при этом разрешение по дальности, равное 1,2 км. Поэтому в эксперименте были получены данные не только о среднеквадратичных углах наклона поверхности вдоль трассы полета ИСЛ, но также были оценены к вариации высот вдоль этой трассы.

    Бистатические радиолокационные измерения, проведенные на ИСЛ «Луна-10» в восточной части видимого с Земли лунного диска, показали, что отраженный сигнал от горных районов имеет весьма изрезанную форму. Это свидетельствует о сильном влиянии неровностей рельефа горных областей на отраженный сигнал в метровом диапазоне длин волн (1,7 м) при облучении поверхности под большими углами падения (? = 60–80°).

    Большая протяженность по дальности отраженного сигнала была вызвана сильной изрезанностью рельефа. Благодаря этому условия «зеркальности» для локальных отражающих площадок выполнялись для широкого диапазона углов падения, а, следовательно, и для большого диапазона дальностей.

    На ИСЛ «Луна-11 и -12» группой ученых Института радиотехники и электроники АН СССР под руководством О. И. Яковлева были продолжены радиолокационные эксперименты в метровом диапазоне длин волн. В этих экспериментах разделение прямого и отраженного сигналов осуществлялось за счет различия их доплеровских частот. Эти ИСЛ не имели системы стабилизации (т. е. ИСЛ произвольно вращался относительно своего центра тяжести), а диаграммы направленности их бортовых антенн значительно отличались от круговых. Поэтому для определения энергетических соотношений между прямым и отраженным сигналами использовалось усреднение сигналов в течение отрезков времени, в которые ИСЛ занимал примерно одинаковое положение по отношению к наземному пункту, т. е. имел одинаковую высоту полета и угол падения относительно точки зеркального отражения.

    Сопоставление экспериментальной зависимости отношения мощностей прямого и отраженного сигналов от утла падения при разных высотах полета ИСЛ с соответствующими теоретическими зависимостями позволило определить среднее значение эффективной диэлектрической проницаемости и среднеквадратичного угла наклона поверхности для всех районов измерения, находящихся в экваториальной зоне Луны. Данные по диэлектрической проницаемости совпали с результатами наземной радиолокации в метровом диапазоне длин волн.

    Бистатическая радиолокация Луны, проведенная па ИСЛ «Лунар-Орбитер-1» учеными Станфордского университета США, была выполнена по более сложной методике. При этом анализировались не усредненные по времени амплитуда и форма спектра отраженного сигнала, как это имело место в экспериментах на ИСЛ «Луна-11 и -12», а записывался мгновенный спектр отраженного сигнала.

    По зависимости изменения от времени отдельных составляющих в спектре отраженного сигнала на одном витке орбиты ИСЛ удалось отождествить отраженные сигналы с локальными районами на поверхности Луны. С учетом данных траекторных измерений были определены координаты мгновенных центров переизлученияи размеры отдельных площадок с повышенным отражением вблизи кратера Кестнер. Размеры таких площадок оказались весьма различными. Самые крупные из них имели линейные размеры 30 км, а самые мелкие около 5 км (в результате обработки была построена радиолокационная карта района кратера Кестнер).

    Анализ расположения в этом эксперименте переизлучающих площадок на поверхности Луны показал, что обычно переизлучают одновременно несколько «радио-ярких» площадок, расположенных вблизи точки зеркального отражения. Однако иногда наблюдаются также и площадки, сравнительно удаленные от трассы перемещений точки зеркального отражения.

    Анализ характера переизлучения поверхности Луны в данном эксперименте позволил сделать следующие выводы.

    Большинство «радиоярких» участков совпало с внутренними склонами кратеров. Часть «радиоярких» участков находилась на очень неровных участках Моря Смита. «Радиояркие» участки, находившиеся внутри кратеров, обладали повышенным переизлучением не только за счет эффекта фокусировки радиолокационного сигнала стенками кратера, но также и за счет более плотного грунта внутри кратера.

    Бистатическая радиолокация, проведенная на ИСЛ «Эксплорер-35», отличалась от предыдущих экспериментов тем, что была применена сложная спектральная обработка отраженного сигнала. Суть этой обработки заключалась в том, что отраженный сигнал вначале записывался на магнитофон и затем подвергался последующей обработке на ЭВМ совместно с данными траекторных измерений. В результате такой обработки определялись мгновенные спектры отраженного сигнала. Сопоставление полученных спектров с результатами теоретически рассчитанных спектров позволило определить значения среднеквадратичных углов наклона поверхности вдоль трассы измерений, а также усредненные значения ? для небольших по протяженности участков трассы перемещения точки зеркального отражения. Этот метод обработки впоследствии стал успешно применяться в большинстве бистатических радиолокационных экспериментов.

    В экспериментах, проведенных на ИСЛ «Эксплорер-35», было отмечено, что интенсивность отраженных сигналов от морских районов примерно на 30 % выше интенсивности отраженных сигналов от материковых районов. Это соответствовало увеличению примерно на 15 % среднего значения эффективной диэлектрической проницаемости вещества грунта морских районов относительно материковых в слое толщиной до 10 м.

    Такой результат был неожиданным, так как в то время (1967 г.) считалось, что грунт лунных морей должен быть более рыхлым, чем материковый грунт. Впоследствии факт большой плотности скальных пород в морских районах был подтвержден экспериментально как на Луне, так и в земных лабораториях.

    По данным радиолокационных измерений вблизи кратера Флемстид был отмечен выход на поверхность скальных пород в этом районе. Такой вывод был сделан по сильному увеличению амплитуды отраженного сигнала в этой области. Следует сказать, что результаты этого эксперимента хорошо коррелировались с данными наземных радиолокационных и инфракрасных измерений этого района, которые также свидетельствовали о более высокой средней плотности грунта в этой области Луны.

    На ИСЛ «Луна-14» были проведены бистатические радиолокационные эксперименты, подобные экспериментам, ранее выполненным на ИСЛ «Эксплорер-35». Было подтверждено, что форма спектра отраженного сигнала является хорошим индикатором степени неровности поверхности. В спектре иногда появлялись несколько максимумов (наличие нескольких максимумов объясняется отражением радиоволн от различных горных склонов и резких изломов). Рассчитанные по спектру значения среднеквадратичных углов наклона для морских районов (длина волны 1,7 м) составили ~ 3°, а для материковых районов эта величина достигла 14°.

    Спектры отраженных сигналов, полученные в экспериментах на ИСЛ «Луна-19» в дециметровом диапазоне радиоволн (32 см), по своему характеру обычно соответствовали спектрам, которые ранее были измерены на ИСЛ «Луна-14» в метровом диапазоне радиоволн. Однако появление спектров отраженного сигнала с несколькими максимумами в дециметровом диапазоне было значительно реже по сравнению с измерениями в метровом диапазоне. Это свидетельствовало о том, что в дециметровом диапазоне спектр отраженного сигнала формируется за счет более мелких неоднородностей, которые более равномерно распределены по поверхности, чем более крупные неоднородности, определяющие спектр в метровом диапазоне. Эффект сильной изрезанности спектра на дециметровых волнах обычно возникал, когда точка зеркального отражения попадала в район с группой кратеров, размеры которых составляли несколько километров, т. е. были сравнимы с размерами зоны наибольшего отражения.

    Для районов с примерно одинаковой структурой поверхности полученные значения среднеквадратичных углов наклона в дециметровом диапазоне оказались, примерно, на 40 % выше, чем в метровом диапазоне. Это соответствует относительно большему числу неоднородностей с меньшими линейными размерами. Такой же вывод был получен и при проведении радиолокационных исследований Луны с Земли методом моностатической радиолокации. Измерения, проведенные с Земли для центрального района диска Луны, показали, что спектр отраженного сигнала расширяется с уменьшением длины волны. Это хорошо коррелируется с зависимостью количества неоднородностей на лунной поверхности от их размеров. Так, число кратеров на Луне сильно возрастает с уменьшением их диаметра. Сильно возрастает также и количество камней в зависимости от уменьшения их линейного размера и т. д.

    Проведение бистатических радиолокационных измерений позволило сделать следующий вывод: морские районы более ровные, чем материковые, в масштабе десятков и сотен метров, но менее ровные в масштабе нескольких дециметров. Основные результаты бистатической радиолокации Луны приведены в табл. 2.

    Таблица 2

    Исследования Меркурия

    Космическая история изучения этой планеты только начинается. Пока вблизи планеты в 1974 и 1975 гг. пролетел только один космический аппарат — «Маринер-10». Он произвел фотографирование поверхности этой планеты и измерение характеристик околопланетного пространства. Фотографии показали, что меркурианский рельеф сильно напоминает лунный.

    При первом пролете «Маринера-10» вблизи планеты 29 марта 1974 г. были проведены радиорефракционные измерения с целью определения характеристик атмосферы и ионосферы планеты, о свойствах которых были весьма разнообразные предположения.

    Измерения проводились одновременно на двух длинах волн — 3,6 и 13,1 см, при заходе и выходе АМС за видимый с Земли диск планеты.

    В результате этих измерений не удалось обнаружить ионосферы, подобной марсианской или венерианской. В результате предварительного анализа был лишь оценен верхний предел максимума концентрации электронов. Он оказался равным 4000 электронов в 1 см3 на ночной стороне планеты и 1500 электронов в 1 см3 на дневной стороне.

    Анализ результатов определения верхнего предела плотности электронов в ионосфере планеты позволил оценить верхний предел плотности нейтральных частиц у поверхности планеты, и в предположении, что атмосфера планеты состоит из газа с большим молекулярным весом (например, аргона), определить атмосферное давление у поверхности. Оно при этих предположениях не превышает 10–11 атм., т. е. атмосфера у планеты Меркурий весьма разреженна. Последующая обработка результатов показала, что ионосфера у Меркурия отсутствует.

    По данным измерений ультрафиолетового спектрометра АМС приповерхностное давление атмосферы, содержащей гелий, не превышает 10–14 атм., т. е. примерно такое же, как и на Луне.

    Исследования Венеры

    В 1967 г. почти одновременно в околопланетное пространство Венеры были выведены две межпланетные автоматические станции «Венера-4» и «Маринер-5», Полетом этих автоматических станций начался этап радиофизических исследований планеты с помощью служебной радиоаппаратуры космических аппаратов. Так. анализ в Центре дальней космической связи СССР интенсивности сигнала, излучавшегося передатчиком спускаемого аппарата (СА) станции «Венера-4», подтвердил, что радиоволны этого диапазона (32 см) не ослабляются атмосферой планеты. Во время измерений были отмечены флуктуации амплитуды радиосигнала, интенсивность которых возрастала по мере спуска СА. Наличие таких флуктуаций амплитуды радиосигнала показывало, что атмосфера планеты турбулентна. Анализ характера распространения в атмосфере планеты радиоволн, которые излучались передатчиками спускаемых аппаратов, проводился и на последующих АМС серии «Венера». Записи амплитуд, принятых в Центре дальней космической связи СССР сигналов передатчиков СА «Венера-5, -6, -7, -8», показали, что быстрые флуктуации сигналов, связанные с турбулентностью венерианской атмосферы, возрастают с уменьшением высоты над поверхностью и увеличением угла между направлением на Землю и местной нормалью СА. Однако на основе проведенных измерений было показано, что при углах более 75° уменьшение амплитуды радиосигнала даже в дециметровом диапазоне может быть столь сильным, что это может привести к временным перерывам в радиосвязи со спускаемым аппаратом.

    Анализ периодичности появлений флуктуаций радиосигналов при нахождении СА на высотах 20–45 км показал, что на этих высотах горизонтальная составляющая скорости ветра может достигать 20–30 м/с. Эти результаты соответствовали данным определения горизонтальной составляющей скорости ветра из анализа величины изменения частоты передатчика спускаемого аппарата за счет эффекта Доплера (частоты Доплера).

    Анализ изменения частоты за счет эффекта Доплера с учетам аэродинамических характеристик спускаемых аппаратов позволил определить не только скорости спуска аппаратов, но и вычислить скорость ветра в атмосфере планеты на разных высотах. Расчеты показали, что скорость ветра возрастает с ростом высоты. Так, например, горизонтальная скорость ветра у поверхности не превышает 2 м/с, а на верхней границе облаков (~ 65 км) достигает 100 м/с. Хотя скорость ветра v поверхности и мала, но из-за огромной плотности атмосферы такой венерианский ветер по своему скоростному напору эквивалентен земному приповерхностному ураганному ветру, мчащемуся со скоростью более 100 км/ч.

    На спускаемом аппарате «Венера-8» впервые был установлен радиовысотомер, с помощью которого измерялась не только высота, но и интенсивность отраженного поверхностью радиосигнала. На предыдущих спускаемых аппаратах радиовысотомеры только измеряли высоту полета. Радиовысотомер «Венеры-8» с импульсной модуляцией работал на длине волны 35 см через антенну с широкой диаграммой направленности.

    В процессе спуска СА дважды была измерена интенсивность отраженного сигнала. Расчеты характеристик отражения проводились в рамках гладкой и плоской моделей поверхности. Рассчитанный по данным двух измерений коэффициент отражения поверхности оказался равным 0,07 и 0,09. Этим значениям коэффициента отражения соответствовало значение эффективной диэлектрической проницаемости ? = 3,2 и величина плотности грунта Венеры ? = 1,4 г/см3. Значения этих величин оказались меньшими, чем это следовало из данных наземных радиолокационных наблюдений, а также из данных прямых измерений плотности грунта в месте посадки автоматической станции «Венера-10».

    Измерения высоты полета в процессе сноса станции ветром (при ее спуске на парашюте в нижней атмосфере) позволили оценить рельеф поверхности на трассе длиной в 60 км, проходящей в экваториальной области Венеры. Горизонтальная составляющая скорости движения спускаемого аппарата определялась с помощью системы траекторных измерений АМС.

    Согласно результатам измерений максимальный перепад высот на этой трассе составил 3,3 км, а средний угол наклона поверхности оказался равен 18°, т. е. значительно выше, чем это следовало из данных наземной радиолокации. На одном из участков трассы протяженностью 1,25 км был измерен перепад высот в 1,5 км, что соответствовало на этом участке трассы среднему углу наклона поверхности более 52°. Такие наклоны не наблюдались даже на Луне, хотя Луна является, судя по наземным радиолокационным наблюдениям, более неровным небесным телом и обладающим существенно большими перепадами высот, чем планета Венера.

    С помощью радиотехнической аппаратуры «Венеры-9 и -10» группой ученых Института радиотехники и электроники АН СССР под руководством О. И. Яковлева впервые были проведены бистатические радиолокационные измерения. Эти измерения выполнялись многократно на длине волны 32 см как с помощью антенны с широкой диаграммой направленности, так и с помощью антенны с узкой диаграммой направленности (рис. 8).

    Рис. 8. Перепады высот ?Н и среднеквадратичные углы наклона поверхности ??, полученные в одном из сеансов бистатической радиолокации Венеры со станции «Венера-9»

    В экспериментах с антенной, имеющей узкую диаграмму направленности, в процессе измерений по программе осуществлялось ориентирование этой антенны в направлении области на поверхности, расположенной вблизи точки зеркального отражения. Полученные спектры отраженного сигнала подтвердили слабую шероховатость поверхности Венеры в районах измерения, которые располагались вдоль трасс протяженностью около 800 км. Среднеквадратичные углы наклонов поверхности вдоль этих трасс изменяются от 1 до 5°. Причем наблюдались районы с существенно различным рельефом — равнинные, с наклонами около 1,5° и гористые с наклонами 3–5°. По данным наземной радиолокации на длине волны 30 см, относящихся к экваториальному поясу планеты, среднее значение среднеквадратичных углов наклона поверхности близко к 5°, т. е. при бистатической радиолокации Венеры были обнаружены более гладкие участки поверхности, чем это получено в среднем для экваториальной области планеты при наблюдении с Земли.

    Пролет «Маринера-5» вблизи Венеры позволил провести измерения рефракции радиоволн на длинах 13 и 71 см в дневной и ночной атмосферах. Радиозаход космического аппарата осуществлялся над ночной стороной планеты, а радиовыход — над дневной.

    Измерения на одной длине волны (13 см) позволили обнаружить дневную ионосферу планеты. Ионосфера днем имела два максимума концентрации электронов на высотах 128 и 140 км. В первом максимуме концентрация электронов составляла 2 · 105 в 1 см3, во втором — 5,5 · 105 в 1 см3. Согласно же измерениям на двух частотах ионосфера у планеты ночью была сравнительно тонкой и имела один максимум ионизации (на высоте около 140 км) с концентрацией электронов на порядок меньшей, чем днем.

    Радиорефракционные измерения, проведенные в тропосфере над дневной и ночной сторонами планеты, показали, что высотные профили температуры, давления и плотности атмосферы в диапазоне высот 34–90 км днем и ночью отличаются друг от друга. Так, днем на этих высотах температура оказалась примерно на 15° ниже, чем ночью.

    Результаты определения температуры и давления по радиорефракционным измерениям «Маринера-5» были сопоставлены с данными прямых измерении этих же параметров, выполненных опускаемым аппаратом «Венера-4». Это позволило получить высотные зависимости температуры и давления в ночной атмосфере планеты в диапазоне высот от 20 до 90 км и определить высоту над поверхностью, на которой спускаемый аппарат станции «Венера-4» прекратил измерения.

    Радиорефракционные измерения Венеры, начатые в 1967 г. группой ученых из Лаборатории реактивного движения и Станфордского университета США под руководством А. Клиоре и Г. Фьелдбо, были ими продолжены в 1974 г. с помощью пролетавшего около планеты космического аппарата «Маринер-10». В 1975 г. радиорефракционные измерения были успешно проведены на двух советских станциях «Венера-9 и -10». В отличие от «Маринера-10», который осуществил однократные измерения радиорефракции при заходе за Венеру, на «Венсре-9 и -10» радиорефракционные измерения проводились более 50 раз в течение двух месяцев. Это позволило изучить свойства атмосферы планеты в разных районах и при разных условиях освещения планеты Солнцем.

    Радиорефракционные измерения на «Маринере-10» проводились одновременно на длинах волн 3,6 и 13 см. Измерения на искусственных спутниках Венеры (ИСВ) проводились в дециметровом диапазоне как на одной длине волны (32 см), так и с помощью дисперсионного радиоинтерферометра, который ранее использовался для изучения ионосферы Луны и работал в дециметровом и сантиметровом диапазонах.

    С помощью радиоаппаратуры «Маринера-10», «Венеры-9 и -10» были исследованы атмосфера и ионосфера планеты как днем, так и ночью. Ночная ионосфера, как показали измерения с помощью «Венеры-9 и -10», является весьма динамичным образованием. С течением времени изменяется количество максимумов ионизации (один или два), их высотное положение и концентрация в них электронов. Протяженность ночной ионосферы невелика — 30–50 км. За 1,5 месяца наблюдений концентрация электронов в максимуме ионизации изменилась почти в 3 раза, а высота максимума изменялась на 10 км относительно среднего значения, равного 135 км.

    Также оказалась весьма динамичной и дневная ионосфера. Изменение количества максимумов и электронной концентрации в главном максимуме, располагающемся на высоте около 150 км, является характерным. Дневная ионосфера прослеживается от ПО до 450 км и более. Следует отметить, что концентрация электронов в максимумах ионизации днем и ночью в 1974 г. оказалась меньшей, чем по данным измерений 1967 г. Это связано с разной степенью солнечной активности в эти годы.

    Исследования нижней атмосферы, выполненные радиорефракционным методом на АМС «Маринер-10» и ИСВ «Венера-9 и -10» на одной длине волны в диапазоне высот 35–90 км, показали, что в области высот 56–64 км наблюдаются постоянно существующие во времени на разных высотах отклонения коэффициента рефракции от монотонного изменения этого параметра с высотой. Эти отклонения связаны с инверсией температуры на данных высотах и вызваны сложной формой облачных образований. По данным радиорефракционных измерении облака па Венере имеют два и более ярусов. Эти данные хорошо совпали с результатами прямых измерений высотных профилей температуры и давления, полученных на «Венере-4», и измерений световых потоков от Солнца в видимом и инфракрасном диапазонах, которые проводились при спуске СЛ «Венера-9 и -10» на поверхность планеты.

    Многократное измерение высотных зависимостей температур и давления в диапазоне высот 35–90 км показало на их временную и пространственную изменчивость. Так, в диапазоне высот 40–60 км температурные изменения на одной и той же высоте превышают 10 °C. На высотах более 75 км вариации температуры на одной и той же высоте становятся больше 30 °C. На высотах 40–60 км при поднимании на один километр температура падает на 9 — 10 °C. На высотах 60–80 км температура уменьшается почти до 4 °C при поднимании на один километр. Все это говорит о том, что ранее принимавшееся предположение о постоянстве температуры на данной высоте днем и ночью не оправдалось.

    В мае 1978 г. к Венере должны отправиться две автоматические межпланетные станции серии «Пионер». Одна из них должна стать искусственным спутником планеты, а другая — спустить в атмосфере планеты к ее поверхности одновременно четыре зонда, которые проведут исследования атмосферы подобно тому, как это уже делали спускаемые аппараты советских автоматических станций «Венера-4, -5, -6, -7, -8, -9 и -10».

    С помощью комплекса АМС «Пионер» предполагается провести ряд радиофизических экспериментов. Так, на искусственном спутнике предусматривается установка радиовысотомера дециметрового диапазона (13 см), с помощью которого будет изучаться рельеф поверхности и измеряться характеристики отражения. Данный прибор будет также периодически работать как радиотелескоп, принимая радиоизлучение поверхности планеты. В результате длительных измерений рельефа ученые надеются получить карты поверхности в масштабе 1: 25 000 000 (в 1 см — 250 км).

    Использование штатной радиотехнической аппаратуры ИСВ позволит провести многократные радиорефракционные измерения (на длинах волн 3 и 12 см). Это даст новую информацию о ионосфере дневной и ночной сторон планеты, позволит получить высотные зависимости температуры, давления и плотности атмосферы в диапазоне высот 35–90 км.

    По излучаемым второй станцией «Пионер», а также се четырьмя спускаемыми аппаратами радиосигналам с помощью трех наземных антенн будет производиться определение расположения этих аппаратов относительно поверхности планеты. Эти данные с учетом баллистических характеристик аппаратов дадут возможность определить направление и скорость ветра в нижней атмосфере в районах спуска станций. Эта информация впоследствии будет использована при моделировании глобальной циркуляции атмосферы, так как спускаемые аппараты и сама автоматическая станция-носитель будут спускаться к поверхности в значительно разнесенных друг от друга районах.

    В 1983 г. в окрестностях Венеры будет проведен совместный советско-французский эксперимент по изучению атмосферы Венеры и ее облачного слоя с помощью ИСВ и космического «аэростата», плавающего на высоте 55 км, т. е. внутри ее облачного слоя. Этот проект является развитием подобного совместного советско-французского проекта «ЭОС», который прорабатывался несколько лет назад.

    Исследования Марса

    Радиофизические исследования Марса, выполненные с помощью аппаратуры, установленной на космических аппаратах, можно разделить на три группы. К первой группе относятся радиорефракционные эксперименты, позволившие получить данные об атмосфере и ионосфере планеты, а также сделать оценку рельефа поверхности по величине приповерхностного давления.

    К второй группе относятся радиоастрономические измерения, позволившие получить информацию о локальных значениях эффективной диэлектрической проницаемости вещества верхнего покрова планеты и о температурном режиме поверхностного слоя.

    К третьей группе относятся эксперименты по радиолокации.

    При пролете АМС «Маринер-4» около Марса на длине волны 13 см были проведены радиорефракционные измерения. Анализ зависимостей коэффициента преломления радиоволн от времени (при заходе и выходе космического аппарата в тень планеты) позволил получить высотные зависимости (профили) температуры и давления в нижней части атмосферы, а также высотную зависимость концентрации электронов и температуры плазмы в верхней атмосфере.

    Атмосфера Марса довольно разрежена — приповерхностное давление в атмосфере составляет величину в среднем около 6 мбар, что соответствует давлению в земной атмосфере на высоте около 35 км.

    В отличие от Венеры, радиоволны в атмосфере Марса не испытывают сверхрефракции в нижней атмосфере. Поэтому радиорефракционные эксперименты позволяют изучать высотные зависимости температуры и давления почти до самой поверхности.

    «Маринер-4» осуществил радиозаход над дневной атмосферой, а радиовыход над ночной. Построенные и результате обработки измерений температурные профили показали, что летняя ночь на Марсе в районе 60° с. ш. значительно теплее, чем зимний день в районе 50° ю. ш. Такое явление наблюдается и в земной атмосфере.

    Приповерхностное давление соответственно для районов радиозахода и радиовыхода КА «Маринер-4» имело значение 4,5 и 8 мбар. Такая разница давлений могла быть получена только за счет разности высот в 7 км между двумя этими районами. Этот перепад высот был подтвержден результатами определения радиуса планеты в местах радиозахода и радиовыхода из измерений дифракции радиоволн. Перепад высот в 7 км не явился неожиданным, так как по данным наземной радиолокации перепады высот на Марсе превышают 10 км.

    Использование при радиорефракционных измерениях одночастотного метода позволило получить информацию только о дневной ионосфере планеты. По данным этих измерений ионизованная область (ионосфера) располагается днем на высотах от 90 до 250 км над поверхностью Марса. Максимум ионизации находится на высоте 120 км (105 электронов в 1 см3). Это соответствовало температуре околомарсианской плазмы около 250 К на высотах 100–160 км.

    Радиорефракционные измерения, выполненные в 1969 т. во время пролета АМС «Маринер-6 и -7» около Марса, позволили определить для дня и ночи высотные зависимости температуры и давления нижней атмосферы планеты, а также исследовать дневную ионосферу Марса. Эти эксперименты проводились на одной длине волны — 13 см.

    В четырех районах планеты измеренное давление колебалось от 4,2 до 7,3 мбар, что соответствовало перепаду высот между этими участками поверхности до 4 км. Дневная приповерхностная температура атмосферы в точке радиозахода «Маринера-6» по радиорефракционным измерениям оказалась на 20° ниже температуры того же участка поверхности, определенной с помощью инфракрасного радиометра, который был установлен на этом же космическом аппарате. Подобное изменение температуры в приповерхностной атмосфере согласуется с расчетами.

    Пролетные траектории позволяют выполнить только два сеанса радиорефракционных измерений — один при заходе КА за диск планеты и второй — при выходе КА из-за диска, и, соответственно, дают информацию об атмосфере только для двух районов планеты (районов радиозахода и радиовыхода КА). Вывод космических аппаратов на орбиту искусственных спутников планеты позволяет проводить радиорефракционные измерения многократно.

    Такие многократные измерения характеристик атмосферы были выполнены радиорефракционным методом с помощью первого искусственного спутника Марса «Марс-2». По данным этих измерений самое высокое значение приповерхностного давления в одном из районов планеты равно 10 мбар.

    Космические аппараты «Марс-2, -4 и -6» позволили исследовать ионосферу планеты при различной высоте Солнца. При проведении этих измерений было замечено, что интенсивность ионизации, высотная структура ионосферы и высота максимумов ионизации сильно зависят от высоты Солнца. Было отмечено, что ионосфера имеет два максимума ионизации, расположенных на разных высотах. Уменьшение высоты Солнца приводило к повышению высоты верхнего (главного) максимума ионизации и к уменьшению в нем концентрации электронов. При этом высота нижнего максимума ионизации практически оставалась постоянной (~ 110 км). Концентрация электронов в нижнем максимуме падала с уменьшением высоты Солнца.

    В главном максимуме ионизации концентрация электронов днем составила 1,7 · 105 в 1 см3. Дневная ионосфера значительно протяженнее ночной и прослеживалась в диапазоне высот от 90 до 500 км.

    Во время пролета вблизи Марса автоматических станций «Марс-4 и -6» были проведены радиорефракционные измерения на двух длинах волн (8 и 32 см) методом дисперсионного радиоинтерферометра, подобного использованному ранее на ИСЛ «Луна-14 и -19». В результате проведенных измерений было отмечено, что ночная ионосфера также, как и дневная, имеет два максимума ионизации. Однако ночью главный максимум располагается низко. Он совпадает с нижним дневным максимумом ионизации (на высоте 110 км) и имеет концентрацию 4,6 · 103 электронов в 1 см3. Выше главного максимума на высоте 190 км находится второй максимум ионизации с концентрацией электронов 2,2 · 103 в 1 см3.

    В вечерней ионосфере главный максимум ионизации располагается на высотах 125–140 км с концентрацией (6–8) · 104 электронов в 1 см3. Советские ученые М. А. Колосов и Н. А. Савич сделали вывод о причине формирования ионосферы на этих высотах днем и ночью. Они предположили, что источником ионизации является галактическое излучение. На рис. 9 показаны высотные профили концентрации электронов по данным измерений АМС «Марс-4» ночной, вечерней и дневной ионосфер Марса. Измерения дневной ионосферы Марса, показанные на этом рисунке, были выполнены на АМС «Марс-2» радиорефракционным методом (на одной частоте).

    С помощью радиорефракционных измерений, выполненных во время полета «Маринера-9» на орбите искусственного спутника Марса, 'было получено большое количество информации, позволившей построить высотные зависимости температуры и давления в нижней атмосфере над разными точками поверхности планеты. По данным этих измерений была построена карта давления у поверхности, которое в разных районах варьировалось от 1 до 9 мбар в области широт ±65°.

    Если предположить, что локальное давление у поверхности определяется лишь высотой расположения данного района измерений, то соответствующая разность крайних значений давлений будет соответствовать разности высот 25,5 км. Если отбросить области с измеренными экстремальными давлениями, то перепад высот между остальными измеренными участками на поверхности Марса не превысит 13 км.

    Рельеф Марса исследовался с помощью наземной радиолокации, радиорефракционных измерений и 'Методами инфракрасной и ультрафиолетовой спектроскопии с космических аппаратов серии «Марс» и «Маринер». Совокупность полученных результатов позволила провести расчет локальных высот и построить по этим данным топографическую карту Марса. По данным этой карты максимальный перепад высот на Марсе составляет 31 км. На Марсе есть целый ряд горных вершин, которые значительно выше Эвереста — самой высокой точки Земли. В то же время на Марсе существуют области, лежащие значительно ниже среднего уровня поверхности планеты. К ним относится равнина Хеллас (Н = –4 км).

    Рис. 9. Концентрация электронов в ионосфере Марса в зависимости от высоты (по данным измерений «Марс»): 1 — для ночной; 2, 3 — вечерней и 4 — дневной ионосфер

    Радиорефракционные измерения показали, что фигура Марса весьма несимметрична. Так, южное полушарие в среднем выше северного на 3–4 км. Высоты в северном полушарии в основном отклоняются на 1 км в сторону понижения относительно среднего радиуса планеты. Причем наибольшие впадины — до 3 км, отмечаются на широтах 60–65°. В южном полушарии превышение большинства высот относительно среднего радиуса составляет 3–4 км, а в приполярной области это превышение уменьшается до 2–3 км.

    По данным радиорефракционных измерений, а также по результатам определений радиуса планеты, используя дифракцию радиоволн, были определены размеры планеты, при представлении ее трехосным эллипсоидом.[5] Большая и малая полуоси, располагающиеся в экваториальной плоскости планеты, согласно этим данным равны соответственно 3400,12 и 3394,19 км, а полярный радиус составляет 3375,45 км.

    Высотные зависимости температуры, полученные в результате обработки радиорефракционных измерений, проведенных на АМС «Маринер-9», показали, что для исследованных районов усредненная величина изменения температуры с высотой в нижней атмосфере колеблется от 0 до 3,8 К/км, что значительно ниже адиабатического (5 К/км). Этот факт свидетельствует об интенсивных динамических процессах в атмосфере и хорошо согласуется с наличием на Марсе сильных ветров. Следует отметить, что величина этого параметра, определенного в разных районах планеты, не коррелируется ни с широтой, ни с местным временем.

    По данным радиорефракционных измерений температура атмосферы у поверхности (в измеренных точках) в области широт ±80° колеблется днем от 150 до 280 К, а ночью от 140 до 200 К. Значение локальной температуры зависит от высоты данного участка, широты, времени суток и сезона.

    Наряду с исследованием нижней атмосферы «Маринер-9» провел многократные измерения рефракции радиоволн в дневной ионосфере планеты. По этим данным были построены высотные зависимости концентрации электронов и определена температура экзосферы планеты.

    Ионосфера исследовалась для значений солнечного зенитного угла от 0° (Солнце в зените) до 100° (Солнце на 10° ниже горизонта). Максимум концентрации электронов в диапазоне солнечных зенитных углов от 0° до 100° снижался от 1,8 · 105 до 0,2 · 105 электронов в 1 см3. При этом и высота максимума ионизации изменялась от 132 до 145 км днем и от 120 до 150 км вечером.

    На искусственных спутниках Марса «Марс-3 и -5» проводились измерения интенсивности и поляризации радиоизлучения планеты на длине волны 3,4 см с линейным разрешением на поверхности от 70 до 400 км. В результате обработки данных были получены локальные значения эффективной диэлектрической проницаемости и термодинамической температуры грунта.

    Орбиты ИСМ «Марс-3 и -5» по своим параметрам существенно отличались друг от друга. Так, период обращения «Марса-3» составлял примерно 12 земных суток, а период «Марса-5» оказался близким к суточному, т. е. к периоду собственного вращения Марса вокруг своей оси. Это позволило для одних и тех же локальных участков при наблюдении с помощью ИСМ «Марс-5» получить четырехкратные измерения, которые были выполнены примерно при одной и той же ориентации антенны бортового радиотелескопа относительно поверхности планеты.

    На ИСМ «Марс-3» только в трех случаях наблюдалось радиоизлучение от одного и того же локального участка поверхности при измерениях на двух различных витках орбиты.

    На рис. 10 в качестве примера приведены результаты обработки одного из сеансов измерений, проведенного с помощью ИСМ «Марс-3», для районов, где абсолютная точность определения эффективной диэлектрической проницаемости грунта была не хуже 30 %. Эта точность измерений соответствует самым точным наземным радиолокационным наблюдениям Марса.

    Здесь даны значения эффективной диэлектрической проницаемости ?, плотности грунта ? и температуры Т. Как видно, локальные значения этих параметров сильно изменяются в пределах одного витка орбиты. Такое же сильное изменение наблюдается и на всех остальных витках. Это свидетельствует о существенном изменении свойств вещества верхнего покрова в разных районах Марса.

    Рис. 10. Результаты измерений эффективной диэлектрической проницаемости, плотности и термодинамической температуры грунта Марса, полученные в одном из сеансов работы станции «Марс-3»

    Анализ измеренных значений температуры показал, что на полуметровой глубине существуют отрицательные (по шкале Цельсия) температуры и что значение этой локальной температуры практически не изменяется при пересечении «лучом» антенны линии терминатора (границы перехода от дня к ночи). Таким образом, радиоастрономические измерения показали, что на полуметровой глубине температура в течение суток практически не изменяется. Это служит еще одним подтверждением низкой теплопроводности марсианского грунта.

    Небольшие изменения температуры на полуметровой глубине могут происходить только в течение нескольких месяцев — так называемые сезонные изменения температуры. Кстати, сезон (зима, весна, лето, осень) на Марсе длится примерно в 2 раза дольше, чем на Земле. Если на Марсе естественный холодильник можно создать на глубине около 0,5–1,0 м, то для создания такого холодильника на Луне достаточна глубина, в 2 раза меньшая. На малых глубинах на Марсе естественный холодильник сделать нельзя, так как в них в полдень на экваторе поверхностная температура достигает 30 °C в перигелии (когда Солнце находится на ближайшем расстоянии от Марса).

    Обработка результатов проведенных на ИСМ «Марс-3 и -5» радиоастрономических измерений показала, что значение плотности грунта в различных районах планеты варьируется в весьма широких пределах — от 1,1 до 3,2 г/см3. Если первое значение соответствует плотности весьма рыхлых пород, то второе — плотности твердых скальных пород.

    По данным этих измерений, а также по результатам наземных радиолокационных наблюдений, выполненных на длине волны 3,8 см, получено распределение плотности грунта Марса (частота появления той или иной плотности). Наземные и космические измерения относятся к разным районам Марса. Поэтому и полученные значения плотности грунта отличаются друг от друга. Следует отметить, что при наземных радиолокационных измерениях обнаружены области с очень низким значением плотности грунта (~1 г/см3).

    Обработка всей совокупности радиофизических измерений Марса, выполненных на длинах волн около 3 см, показала, что среднее значение плотности грунта в полуметровом слое близко к 1,4 г/см3. Эта величина находится между средними значениями плотностей грунта Луны и Венеры в слое полуметровой толщины и совпадает с результатами прямых измерений АМС «Викинг-1 и -2».

    Совместная обработка данных наземной радиолокации Марса на длинах волн 3,8 и 12,5 см показала, что для большинства районов не обнаруживается существенной разницы в значениях плотности, определенной по данным измерений на той и другой длинах волн. Это свидетельствует о том, что плотность грунта почти не изменяется с глубиной в слое толщиной до 2 м.

    Проведение на искусственных спутниках «Марс-3 и -5» одновременных исследований грунта в радио- и инфракрасном диапазонах позволило с помощью расчетов получить весьма интересную информацию о химическом составе грунта планеты. Проведенные расчеты, базирующиеся на результатах измерений в радиоастрономических и инфракрасных диапазонах, а также на данных наземных радиоастрономических исследований планеты в миллиметровом диапазоне, позволили вычислить среднюю электропроводность грунта Марса в районах измерений ИСМ «Марс-3 и -5». По величине электропроводности грунта удалось установить относительное содержание двуокиси кремния — кремнезема (SiO2), в веществе верхнего покрова Марса. Оказалось, что грунт Марса на 62–72 % состоит из двуокиси кремния. Это значит, что грунт Марса не является базальтом, как это имеет место в лунных морях, но это и не граниты, которые содержат большой процент кремнезема. Поэтому, судя по содержанию кремнезема, грунт Марса может быть сложен из анортозитов — материала лунных материков.

    Весьма интересен тот факт, что процентное содержание двуокиси кремния в грунте Марса оказалось близким к содержанию двуокиси кремния в пылевых облаках, исследованных с помощью инфракрасного спектрометра группой Р. Хеннела на ИСМ «Маринер-9» во время мощной пылевой бури на Марсе в 1971 г.

    Так как результаты определения содержания кремнезема в грунте и пылевых облаках оказались одинаковыми в пределах точности измерений, то это говорит о том, что вещество самого верхнего покрова Марса, участвовавшее в создании пылевых облаков по время пылевой бури, вероятно то же самое, что и вещество более глубоких слоев грунта. Этот интересный факт, полученный при совместной обработке радиофизических и инфракрасных экспериментов, еще одно свидетельство необходимости комплексного подхода при проведении сложных космических экспериментов.

    На космических аппаратах «Маринер-6 и -7» была сделана первая попытка бистатической радиолокации Марса — на длине волны 13,0 см с помощью передатчиков, которые работали в режиме непрерывного излучения. Условия экспериментов были неудачными, но ученым удалось по сопоставлению ширины спектра отраженного сигнала с расчетными данными оценить среднеквадратичные углы наклона поверхности в районах измерений АМС «Маринер-6».

    В горной части трассы, изобилующей кратерами, значение этого угла было несколько меньше 1,5°. При перемещении зеркальной точки в район Тимиамата (вблизи кратеров Трувело и Март: ? = 10–15°, ? = 0 — 10°) спектр отраженного сигнала стал значительно уже, что соответствовало уменьшению значения ?? примерно в 3 раза.

    В процессе измерений несколько раз было отмечено сильное уменьшение интенсивности отраженного сигнала. Причиной таких флуктуации могло быть наличие в районах точки зеркального отражения валов кратеров и протяженных наклонных площадок. Эти образования способствовали формированию отраженного сигнала в направлении, отличном от направления на наземный пункт приема.

    Эксперименты на АМС «Маринер-6 и -7» проводились при очень больших углах падения (? ? 86°), что определялось узкой шириной диаграммы направленности бортовой антенны КА. Антенна КА во время эксперимента была направлена на Землю, так как вслед за экспериментом по бистатической радиолокации проводился эксперимент по измерению рефракции радиоволн при заходе АМС за видимый с Земли диск планеты (для определения высотных зависимостей температуры и давления в атмосфере планеты).

    Во время полета автоматических станций «Викинг-1 и -2» около Марса было проведено несколько радиофизических экспериментов по изучению свойств атмосферы и поверхности планеты. Так, с помощью орбитальных аппаратов этих станций проводились радиорефракционные измерения одновременно на длинах волн 3,8 и 13 см, а также предполагалось проведение сеансов по бистатической радиолокации с приемом прямого и отраженного сигналов на Земле.

    Радиотехническая аппаратура системы посадки спускаемых аппаратов использовалась для проведения моностатической радиолокации на длине волны 2,3 см (радиолокационный измеритель скорости спуска) и на длине волны 30 см (радиовысотомер). Кроме того, радиопередатчики спускаемых аппаратов, работавшие на длине волны 75 см, использовались для проведения бистатической радиолокации с приемом прямого и отраженного сигналов на борту орбитальных аппаратов. Так по данным радиоизмерений траектории полета орбитальных аппаратов уточнен период вращения Марса, который равен 24 ч 37 мин 22,663 ± 0,004 с, что на 8 мс больше периода, определенного астрономами по многолетним наблюдениям.

    В одном из районов Великой Северной равнины определено приповерхностное давление и температура атмосферы, а также высота этой области относительно среднего радиуса планеты. Эти данные получены путем радиорефракционных измерений, проведенных с борта орбитального аппарата «Викинга-1».

    Проведенные измерения ночной ионосферы позволили лишь оценить верхний предел максимальной концентрации электронов. Он оказался равным 3 · 104 электронов в 1 см3, что в 3 раза выше верхнего предела, оцененного по подобным измерениям ночной ионосферы, проведенным во время пролета АМС «Маринер-4» в 1965 г.

    Эксперимент по бистатической радиолокации, проведенный с помощью спускаемого аппарата «Викинга-1», показал, что в месте посадки грунт имеет эффективную диэлектрическую проницаемость ? = 3,5 ± 0,5, что характерно для пород типа туфов. Результат измерений величины эффективной диэлектрической проницаемости находится в хорошем согласии с данными измерений плотности грунта, выполненных с помощью приборов этого же спускаемого аппарата.

    Большие планеты

    Пока космические аппараты достигли только окрестностей Юпитера — ближайшей из больших планет, или, как их еще называют, планет-гигантов. Космический аппарат «Пионер-11», пролетев мимо Юпитера в декабре 1974 г., сейчас держит путь к Сатурну, к которому он приблизится в сентябре 1979 г.

    В августе-сентябре 1977 г. в США запущено два космических аппарата «Вояжер», которые должны пролететь вблизи Юпитера и Сатурна и передать на Землю данные об этих планетах и их спутниках — Ио и Каллисто (у Юпитера), Титана и Япета (у Сатурна). После этого один из этих космических аппаратов планируется направить к Урану и, возможно, Нептуну.

    На автоматических межпланетных станциях «Вояжер» установлен радиометрический приемник, который подключен к V-образной штыревой антенне, длина штырей которой равна 10 м. С помощью этой антенны будут изучаться радиоизлучения Юпитера и Сатурна на ряде частот в диапазоне 20 кГц — 40 МГц. Проведение данного эксперимента вблизи Юпитера, вероятно, позволит определить влияние местоположения спутника Ио на радиоизлучение Юпитера в этом диапазоне радиочастот, а также локализацию всплесков радиоизлучения Юпитера относительно его магнитосферы и самой планеты.

    Использование мощных бортовых передатчиков на длинах волн 3 и 12 см позволит провести радиорефракционные измерения вблизи Юпитера и Сатурна с целью определения физических характеристик их атмосфер и ионосфер.

    Рассмотрим результаты радиофизических исследований Юпитера.

    Дважды с американских искусственных спутников Земли «РАЕ-1» (в 1969 г.) и «ИМП-6» (в 1972 г.), а также с искусственного спутника Луны «РАЕ-2» (в 1973 г.) проводились эксперименты по измерению радиоизлучения Юпитера в недоступном для наземных наблюдений диапазоне низких частот, которые не пропускаются земной ионосферой. На ИСЗ «РАЕ-1», радиометры одновременно регистрировали радиоизлучение на 7 частотах в диапазоне 450 кГц — 4,7 МГц, а на «ИМП-6» — на 25 частотах в диапазоне 425 кГц — 9,9 МГц. Для компенсации радиопомех от Земли на борту спутников устанавливались специальные антенные системы. Измерения радиоизлучения Юпитера одновременно проводились с борта ИСЗ и с помощью наземных радиотелескопов, но на более высоких частотах, чем с борта искусственного спутника.

    На ИСЛ «РАЕ-2» измерение радиоизлучения одновременно проводилось на 9 частотах в диапазоне 450 кГц — 9,18 МГц. При этом на борту использовалась штыревая V-образная антенна, штыри которой имели длину 229 м.

    В результате всех этих измерений было зарегистрировано несколько сот всплесков радиоизлучения Юпитера. Максимум плотности потока радиоизлучения находился в области 7,5–8 МГц с очень ярко выраженным спадом интенсивности в области более высоких и более низких частот. На ИСЗ «ИМП-6» был зарегистрирован другой тип радиоизлучения, который имел узкий спектр, расположенный вблизи частоты 900 кГц. Иногда наблюдался спектр, являющийся комбинацией этих типов спектров.

    Во время пролета космических аппаратов «Пионер-10 и -11» вблизи Юпитера были проведены сеансы радиорефракционных измерений на длине волны 13,1 см. Причем была исследована ионосфера и нижняя атмосфера планеты.

    Были получены высотные профили концентрации электронов. При этом была отмечена многослойность до 5–7 слоев ионосферы, т. е. концентрация электронов имела поочередно несколько максимумов и минимумов в пределах высот ~ 3000 км. По данным радиопросвечивания было получено, что в области высот, где давление изменяется от 10 до 1 мбар, температура с высотой возрастает от 80 — 120 до 130–170 К. Эти данные оказались в хорошем согласии с результатами измерений инфракрасного радиометра АМС «Пионер-10».

    Во время полета «Пионера-10» был осуществлен радиозаход спутника Юпитера Ио. По данным радиорефракционных измерений ионосфера Ио прослеживается днем до высоты 800 км, а ночью — до 250 км. Днем максимум концентрации составляет 6 · 104 см–3 и находится на высоте 100 км, а ночью — 9 · 103 см–3 (на высоте ~ 50 км).

    Проведенные по этим данным расчеты показали, что плотность нейтрального газа на поверхности Ио составляет 1011 — 1012 см–3, что соответствует давлению у поверхности 10–5 — 10–6 мбар. Во время радиозахода был определен средний радиус Ио, который оказался равен 1875 км.

    Проведение траекторных измерений при пролете «Пионеров» вблизи Юпитера позволили уточнить массы и радиусы планеты и ее галилеевых спутников, а следовательно, и определить их среднюю плотность. По данным этих измерений средняя плотность Юпитера равна 1,33, а средняя плотность спутников Ио, Европы, Ганимеда и Каллисто соответственно равны 3,52, 3,28, 1,95 и 1,63 г/см3. Средние диаметры этих спутников соответственно равны 3640, 3050, 5270 и 5000 км.


    Примечания:



    4

    Следует сказать, что толщина слоя грунта, плотность которого определялась контактно и дистанционно (радиолокационными методами), в большинстве случаев различна. Поэтому для сравнения полученных данных производился пересчет результатов определения плотности к одной толщине слоя верхнего покрова. Такой пересчет особенно необходим для лунных измерений в связи с тем, что плотность грунта Луны существенно изменяется с глубиной.



    5

    Следует сказать, что фигура Земли, представленная трехосным эллипсоидом, имеет размеры: большой и малой полуосей, расположенных в экваториальной плоскости, — 6378,345 и 6378,145 км соответственно, и полуоси в направлении от экватора к полюсам — 6356,863 км.









     


    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх