Периодический закон и его триумф

Называть, описывать и классифицировать — вот основа и цель науки — провозгласил в своё время знаменитый Кювье. Можно сейчас оспорить высказывание прославленного зоолога и анатома. Однако следует учитывать, что всякая наука начинается с накопления сведений, после чего появляется настоятельная необходимость эти сведения как-то систематизировать. Шведский естествоиспытатель Карл Линней говорил: «Система — это ариаднина нить, без неё всё дело превращается в хаос».

Химикам 60-х гг. прошлого столетия стало известно более 60 элементов. Подробно были описаны свойства каждого из них и их соединений, многие имели широкое промышленное значение, учёные находили между ними черты определённого сходства и разительного отличия. Появилась нужда в систематизации элементов, но, несмотря на то, что по сравнению с зоологией и ботаникой химия располагала сравнительно «небольшим хозяйством», привести его в определённый порядок было не так-то просто.

Первая попытка привести элементы в какую-то систему относится ещё к тому времени, когда классическая химия только становилась на ноги. Она принадлежит Лавуазье. Разделавшись с флогистоном, он составил таблицу простых тел, основанную на классификации их по химическим свойствам. Сейчас эта таблица вызывает к себе лишь исторический интерес, но в своё время она сыграла важную роль.

В начале XIX в., точнее в 1815 г., английский врач и химик (опять врач и химик!) У.Праут, подхватив мысль своего соотечественника Г.Дэви о водороде как первоматерии, построил на ней гипотезу, гласившую, что все элементы происходят из водорода путём какого-то процесса типа конденсации. Гипотеза надолго овладела умами исследователей, хотя бельгийский профессор Жан Серве Стас, вначале её горячий поклонник, своими расчётами и многолетними экспериментами (теми самыми, которыми он хотел подтвердить разложение элементов на другие, более лёгкие) доказал затем, что она — «чистая спекуляция, определённо противоречащая опыту».

Почти одновременно с этим один из последователей Дальтона, Деберейнер, опубликовал таблицы атомных весов некоторых элементов; они объединялись в триады, в которых атомный вес среднего элемента равнялся примерно полусумме крайних. Литий — натрий — калий, кальций — стронций — барий, хлор — бром — йод — вот примеры таких деберейнеровых триад.

К середине прошлого века большое впечатление на учёных произвели успехи органической химии, которая совсем недавно, по выражению Фридриха Велера, представляла собой дремучий лес, из которого нет выхода. В 1850 г. Петтенкоффер попытался найти у элементов соотношения, подобные тем, что обнаруживаются в гомологических рядах, т. е. в рядах соединений, отличающихся друг от друга группой CH2. Он указал, что атомные веса некоторых элементов отличаются друг от друга на величину, кратную 8. Отсюда напрашивался вывод: так ли просты элементы, не являются ли они некими сложными образованиями каких-то субэлементарных частиц? На следующий год подобные соображения высказал Ж.Дюма. Выводы из существования закономерных соотношений атомных весов шли у него далеко: ставился вопрос о возможности разложения элементарных веществ на субэлементарные образования, а стало быть, и возможности трансмутации металлов. Опять следует заметить, что такого учёного, как Дюма, ни в коей мере нельзя причислить к сторонникам алхимических воззрений, но мысль, высказанная им, полностью соответствовала убеждениям алхимиков.

До знаменательного 1860 г. было ещё несколько попыток как-то систематизировать известные химические элементы. Л.Гмелин, Дж. Гладстон, Дж. Кук, Ф.Ленссен, В.Одлинг, А.Штреккер объединяли их в триады, пентады и т. д. и находили при этом какую-то числовую зависимость в возрастании атомных весов сходных элементов. Но этим дело обычно и ограничивалось, а предлагаемые таблицы сильно разнились друг от друга. Да иначе и быть не могло, так как многие элементы ещё не были открыты, а атомные веса уже известных элементов до конгресса в Карлсруэ не имели, как мы знаем, единого для всех химиков значения.

В 1862–1863 гг. попытку систематизировать элементы сделал французский химик Шанкуртуа. Предложенная им система имела своеобразное построение и осталась в истории как «винтовая линия Шанкуртуа». Все известные к тому времени элементы в порядке возрастания их атомных весов были занесены на ленту, которая по спирали накладывалась на цилиндр; поверхность цилиндра была разделена на 16 частей (атомный вес кислорода). Развернутый после этого цилиндр показывал на своей плоскости ряд отрезков параллельных прямых с вписанными элементами атомного веса от 1 до 16, от 16 до 32 и т. д. При таком расположении сходные по своим химическим свойствам элементы часто, но не всегда, попадали на одну образующую цилиндра. По мнению историков науки, в системе Шанкуртуа содержался зародыш периодического закона, но в то же время она давала широкий простор для произвола. Вместе с элементами-аналогами на одну образующую попадали совершенно несхожие с ними. Для углерода атомного веса 12 должна была существовать и какая-то «разновидность» его с атомным весом 44. Парижская академия наук, где делал своё сообщение Шанкуртуа, восприняла его весьма холодно, и об этой работе стало широко известно лишь 30 лет спустя.

Начиная с 1863 г., много занимался классификацией элементов и выступал с сообщениями лондонский химик Джон Ньюлендс. Он обратил внимание на то, что номера аналогичных элементов отличаются на величину 7, как в музыке, и расположил элементы по некоему «закону октав». Когда с очередным докладом Ньюлендс выступал в лондонском Химическом обществе, профессор Фостер с издёвкой спросил: «Не пробовал ли уважаемый докладчик располагать в таблице элементы в алфавитном порядке и не заметил ли при этом каких-либо закономерностей?» Собрание отказало в публикации сообщения Ньюлендса в своих изданиях и надолго отбило у него охоту заниматься подобными вопросами.

В 1864 г. в Германии вышла в свет книга Лотара Мейера «Современные теории химии и их значение для химической статики». В ней, пользуясь уже новыми атомными весами, автор отмечал, что аналогичные по свойствам элементы имеют одинаковую валентность («значность»), а величины их атомных весов отличаются на постоянную разность. В приведённых им таблицах валентности не всегда соответствовали действительности, но Мейер, как говорится, втиснул их в прокрустово ложе, так как не решался хоть на минуту усомниться в правильности атомных весов. Он так и писал тогда: «Нельзя сомневаться, что имеется некоторая закономерность в численных величинах атомных весов… несомненно нельзя — как это делалось достаточно часто — ради предполагаемой законности произвольно исправлять или изменять найденные эмпирически атомные веса, пока опыт не даст более точных чисел».

В 1867 г. молодого тогда профессора Д.И.Менделеева пригласили занять кафедру Петербургского университета. Он стал читать курс лекций по общей химии и одновременно писал свои ставшие потом знаменитыми «Основы химии».

С описания свойств какого элемента следует начинать курс химии? В принципе всё равно с какого: свойства элементов, если не обращать внимания на водородную первоматерию Г.Дэви и гипотезу У.Праута, между собой никак, казалось, не соотносились. Как правило, начинали с описания кислорода — элемента, имеющего наибольшее распространение в природе; некоторые профессора находили более удобным начинать курс с описания водорода — самого лёгкого элемента. С таким же успехом можно было начинать с железа — элемента, имеющего важнейшее значение в промышленности, золота — драгоценного металла и т. д.

Менделеева такое чтение курса «как вам будет угодно» не устраивало, он настойчиво стал искать взаимосвязь элементов, скрытое единство.

Все предыдущие попытки систематизации элементов не производили впечатления на учёный мир Европы. Сложилось убеждение, что от таких работ нельзя получить чего-нибудь большего, кроме разбивки элементов на отдельные группы по признаку их химического сходства. И всё же Менделеев, прекрасно осведомлённый об установившемся взгляде на систематизацию, взялся за это дело. В отличие от других исследователей, он искал не только сходство элементов, но и различие. На отдельных карточках он выписал их свойства и атомные веса и стал, как любят об этом вспоминать историки химии, раскладывать знаменитый «пасьянс». Менделеев расположил все элементы в порядке возрастания их атомного веса и заметил, что свойства их через какой-то период повторяются. Это был титанический труд. Менделеев искал не какую-нибудь частную закономерность, а закон естественного соотношения элементов. Все элементы были разбиты на группы и периоды.

Менделеев открыл закон, кратко выражающийся словами: свойства элементов являются периодической функцией их атомного веса. Окончательную формулировку закона Менделеев дал в 1871 г. в статье «Периодическая законность для химических элементов». Изнурительная работа по классификации элементов привела к созданию «периодической системы». Но хорошо известная ныне таблица Менделеева приобрела стройный вид лишь после долгих проверок, выяснений, уточнений, исправлений, проводившихся в течение десятилетий.

Затруднения в раскладке «пасьянса» начались сразу же. Прежде всего нарушал порядок бериллий, атомный вес которого тогда признавали за 14. Менделеев решился исправить атомный вес, подозревая, что бериллий не двух, а трёхвалентен. На это ещё раньше указывал русский химик И.В.Авдеев. Взяв формулу окиси бериллия (а именно на её основе химики рассчитали атомный вес бериллия), Менделеев произвёл пересчёт и заменил число 14 на 9,4.

Аналогичная трудность возникла с индием: ему никак не находилось место в таблице. Тогда Менделеев произвёл обратный (сравнивая с окислом бериллия) пересчёт и получил атомный вес не 75,6, а 113. В соответствии со своим атомным весом титан должен был бы занять клетку под бором, но он никак туда не подходил из-за несходства химических свойств. Менделеев оставил клетку пустой, а титан передвинул на следующее место. Казалось бы, порядок рушился, однако создатель системы указал, что в пустой клетке должен поместиться элемент, который ещё не открыт. Название этому элементу Менделеев не дал, предоставив это тому, кто его обнаружит, а обозначил его пока экабором (т. е. аналогичным бору). Подобным же образом Менделеев оставил пустые места для экаалюминия и экакремния. Но этим он не ограничился, он подробно описал будущие элементы, предсказал их химические свойства, удельный вес и даже высказал предположение, что откроют их, по всей вероятности, спектральным методом.

Далеко не все и не сразу химики согласились с Менделеевым. По свидетельству Н.А.Меншуткина, сделавшего первое сообщение о системе Менделеева на заседании Химического общества 6 марта 1869 г. (сам Менделеев был болен), оно не вызвало какого-либо интереса или обмена мнений. Современники Менделеева полагали, что никакого реального научного значения подобные построения не имеют. Такое отношение на первых порах встретила система Менделеева со стороны даже тех учёных, которые высоко ценили его талант, таких, как Зинин, Кольбе, Марковников. Чешский химик Б.Браунер рассказал об открытии Менделеева Бунзену. И что же? Знаменитый Бунзен, в лаборатории которого два года работал Менделеев, отнёсся к сообщению крайне иронически и ответил Браунеру: «Бросьте увлекаться этими вещами. Я сам сделаю сколько угодно подобных сообщений на основании различных чисел, которые печатаются в биржевых ведомостях».

Так отнеслись наиболее благорасположенные к Менделееву химики. А были и такие, которые высказывались с гневом и возмущением: как можно включать в курс точной науки выдуманные элементы, что за спекуляция с атомными весами, это химия или хиромантия? Это научный труд или толкователь снов?

Такую реакцию учёных можно объяснить, видимо, только тем, что предложенные Менделеевым таблица и принцип систематизации требовали коренной перестройки мышления.

Сам Менделеев отмечал впоследствии: «Мысль сличить все элементы по величине их атомных весов… была чужда общему сознанию». Тем не менее Менделеев счёл своим долгом и честью учёного отдать должное предшественникам: «Плод, однако, зрел, и я вижу ныне ясно, что Штреккер, де Шанкуртуа и Ньюлендс стояли впереди всех на дороге к периодическому закону, и им недоставало только решимости поставить дело на подобающую ему высоту, с которой виден закон и рефлексы закона на факты».

Оправдана ли была решимость самого Менделеева? Дальнейшие события показали это со всей ясностью. Л.Мейер, ознакомившись со статьёй Менделеева, представил свою таблицу элементов, во многом схожую с таблицей русского учёного, привёл кривую атомных объёмов, но свою работу закончил словами: «Было бы преждевременно на основании таких шатких опорных точек предпринять изменение общераспространённых сейчас атомных весов».

Прошло всего пять лет после публикации Менделеевым его периодического закона, и в Докладах Парижской академии наук появилась заметка об открытии нового элемента галлия с помощью того же спектрального метода. Узнав об этом, Менделеев тут же направил в академию письмо, где указал, что новый элемент не что иное, как предсказанный им экаалюминий. Сходилось всё вплоть до способа открытия.

Автор открытия Лекок де Буабодран узнал о существовании Менделеева только из его письма. Буабодран усомнился в правильности предсказания и склонен был отрицательно отнестись к нему, так как по его измерениям удельный вес нового металла выражался числом 4,7, тогда как Менделеев указал на 5,9–6,0. Менделеев снова отправил во Францию письмо и настойчиво посоветовал более тщательно очистить полученный металл от натрия, который использовался для восстановления. У французского исследователя второе письмо Менделеева вызвало недоумение и раздражение: кто в конце концов открыл новый элемент, он, Лекок де Буабодран, или этот петербургский Менделеев, ничего не имеющий в руках, кроме своей таблицы? И всё же он последовал совету Менделеева, провёл более тщательную очистку нового металла и был буквально потрясён: оказалось, что удельный вес галлия действительно равен 5,935. Из скептика Лекок де Буабодран превратился в горячего приверженца периодического закона. «Я полагаю, — писал он, — что нет нужды настаивать на исключительной важности подтверждения теоретических взглядов г. Менделеева относительно плотности нового элемента».

Это событие было оценено Ф.Энгельсом как научный подвиг Менделеева, подобный подвигу в астрономии Леверье, открывшему новую планету «на кончике пера».

Через пять лет шведский химик Л.Нильсон открыл ещё один элемент — скандий и указал в своём сообщении на полное совпадение свойств нового металла со свойствами предсказанного Менделеевым экабора. «Не остаётся никакого сомнения, — писал он в заключение, — что в скандии открыт экабор… так подтверждаются самым наглядным образом мысли русского химика, позволившие не только предвидеть существование названного простого тела, но и наперёд дать его важнейшие свойства».

Прошло ещё несколько лет, и К.Винклер открыл новый элемент германий, который посчитал аналогом сурьмы. Отношение к периодическому закону было уже несколько иное, и к Винклеру с разных концов поступили письма, в которых указывалось, что он ошибся: новый элемент — аналог не сурьмы, а кремния. Об этом его извещал сам Менделеев из Петербурга, Л.Мейер из Тюбингена и В.Рихтер из Бреславля. Винклер всё перепроверил и написал восхищённо: «Вряд ли может существовать более яркое доказательство справедливости учения о периодичности элементов, чем оплотворение до сих пор предположительного экасилиция».

«Надо что-либо одно, — писал Менделеев в «Основах химии», — или считать периодический закон верным до конца и составляющим новое орудие химических знаний, или его отвергнуть».

После ряда его блестящих подтверждений отвергать закон было трудно, но и до полного его обоснования было тоже ещё далеко: физический смысл периодического закона стал ясен, когда учёные совершили прорыв в мир атома.

В сентябре 1886 г. Крукс выступил в Бирмингеме с речью «О происхождении химических элементов», в которой высказался в том духе, что атомы всех химических элементов последовательно образовались из первоначальной материи — протила. Эта речь возродила давний умозрительный спор о единстве мира, сведя его теперь к проблеме происхождения элементов и периодичности их свойств. По мнению К.А.Тимирязева, схема Крукса «дополняет менделеевскую систему в том отношении, что уясняет происхождение периодичности свойств участием второго фактора — электрического характера элементов, тогда как один фактор (атомный вес) для этого недостаточен». Природа химических сил оставалась неуловимой, а мысль об электрическом характере их высказывалась на протяжении всего XIX столетия.

Возврат к мысли о происхождении элементов из первоначальной материи, об их сложности сравним с подбрасыванием хвороста в затухающий костёр. Затухающим костром в данном случае была идея трансмутации. Как же относился к ней Менделеев? В 60-е гг., как мы уже отмечали, он относился к ней сочувственно. В одной из статей, написанной на тему о сельском хозяйстве, он писал: «Ни один химик не решится отрицать того, что один элемент может превращаться как-нибудь в другой элемент». С годами, после открытия периодического закона, Менделеев стал осторожен в таких высказываниях. Как-то А.М.Бутлеров подарил ему свою книгу «Основные понятия химии», в которой приводилось менделеевское же положение, высказанное в одной из статей по периодическому закону: «Если бы, значит, какой-нибудь из известных ныне элементов подвергся разложению, или образовался новый элемент, то это могло бы, пожалуй, сопровождаться убылью или возрастанием веса». Менделеев подчеркнул слова «Если бы, значит… подвергся разложению» и написал рядом: «Но ведь этого нет. Сказано лишь для ясности».

После заседания Физического общества, на котором обсуждалась речь Крукса, как вспоминает Тимирязев, Менделеев до поздней ночи спорил с ним и известным физиком А.Г.Столетовым. Этих учёных привлекла речь Крукса тем, что в ней проводилась «плодотворная идея об эволюции». Менделеев же протестовал против вывода, делаемого из его же периодического закона, и отстаивал «индивидуальность» каждого элемента. Истощив все свои возражения в споре с Тимирязевым и Столетовым, Менделеев начал горячиться и пустил в ход совсем уже не научный довод: «Александр Григорьевич, Климентий Аркадьевич! Помилосердствуйте! Ведь вы же сознаёте свою личность? Предоставьте же и Кобальту, и Никелю сохранить свою личность». После этого разговор быстро перевели на другую тему, дабы излишне не раздражать Менделеева; а вспоминалось участникам спора, что в начале 60-х гг. Менделеев вполне сочувствовал гипотезе Праута и даже как бы пожалел, что более точные цифры бельгийца Стаса принуждают от неё отказаться.

В первом издании «Основ химии» Менделеев писал: «Легко предположить, что атомы простых тел суть сложные существа, образованные сложением некоторых ещё меньших частей (ультиматов), что называемое нами неделимым (атом) — неделимо только обычными химическими силами… выставленная мной периодическая зависимость между свойствами и весом, по-видимому, подтверждает такое предчувствие…». Но уже тогда он записал в «Дневнике»: «Следовательно, всё сводится на элементы, всё учение химии состоит в учении о свойствах элементов: цель и задача — превратить один в другой — это будет дальше». Он искал свои «ультиматы» или «предводородные» элементы, полагая, что возможны элементы легче водорода, для чего изучал разреженные газы. Тогда он не получил желаемых результатов.

Такая «непоследовательность» великого учёного смущала не только его современников, но и последующих исследователей. Между тем, если вдуматься, она была вполне в духе времени. Наука о строении веществ напоминала тогда человека, готового принять крайне важное решение, но для этого ему не хватало фактов, а каких — он и сам ещё не знал.





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх