НЕУСТОЙЧИВОСТЬ ВАКУУМА И НЕОБЫЧНЫЕ СОСТОЯНИЯ ЯДЕРНОГО ВЕЩЕСТВА

Лучший жребий физической теории - послужить основой для более общей теории, оставаясь в ней предельным случаем.

А. Эйнштейн

Явления, о которых пойдет речь, еще не обнаружены на опыте. Они пока существуют только на бумаге

как результат теоретических расчетов и оценок. Но оценки эти достаточно правдоподобны, а явления настолько важны, что прилагаются серьезные усилия, чтобы подтвердить или опровергнуть предсказания теории.

Согласно этой теории ядерное вещество, то есть вещество, состоящее из нейтронов и протонов, может находиться в различных состояниях - в обычном, в котором оно находится в атомных ядрах, и в необычном, более плотном состоянии (а может быть, и в нескольких более плотных состояниях). Это могло бы означать, что наряду с обычными ядрами существуют аномальные ядра с другими свойствами (с другой плотностью, другим отношением заряда к массе, с другой энергией связи нейтронов и протонов).

Это явление тесно связано с другим, как часто бывает в теоретической физике, на первый взгляд очень далеким, - с перестройкой вакуума в сильных полях.

В сильных полях вакуум перестраивается - в нем образуются частицы, или, точнее, появляется поле частиц определенного типа, в зависимости от характера внешнего поля. Такая перестройка подобна фазовому переходу в обычном веществе, например переходу металла в сверхпроводящее состояние. Поэтому, прежде чем изучать такой сложный объект, как вакуум, полезно вспомнить, что такое обычные фазовые переходы.

Фазовые переходы

Как известно, одно и то же вещество в зависимости от внешних условий (температуры, давления, магнитного или электрического поля, приложенного к телу, и так далее), может находиться в разных состояниях, разных «фазах». Соответствующий переход называется «фазовым переходом». Например, лед (твердая фаза воды) при температуре ниже нуля, но при достаточном давлении плавится - это означает, что вода из твердой фазы переходит в жидкую. Помимо переходов из твердого в жидкое или из жидкого в газообразное состояние, существует множество самых различных фазовых переходов. Это, например, переходы металлов из нормального состояния в сверхпроводящее, из ферромагнитного - в парамагнитное; переходы в твердых телах, связанные с изменением симметрии кристаллической решетки; переход гелия из нормального в сверхтекучее состоя

208

ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.

Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.

В таких случаях переход называется «переходом 1-го рода».

Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.

Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».

Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.

Фазовые переходы вакуума

Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.

Как мы уже знаем, в вакууме непрерывно рождаются и исчезают всевозможные частицы, он заполнен такими виртуальными частицами.

Зададим себе вопрос: что случится с виртуальными частицами, если в вакууме появится сильное поле? Не сделаются ли они реальными?

Допустим, что в некоторой области пространства создано сильное поле - электрическое, гравитационное или ядерное (поле, создаваемое нуклонами). Пусть поле имеет вид потенциальной ямы. Самый простой пример потенциальной ямы - это впадина на поверхности Земли. Когда частица попадает извне в потенциальную яму, ее кинетическая энергия увеличивается, как у камня, скатывающегося с горы.

В вакууме у верхнего края ямы непрерывно рождаются и исчезают всевозможные частицы. Для того чтобы виртуальная частица стала реальной, ей согласно формуле Эйнштейна необходимо передать энергию, равную тс2, где т - масса частицы, ас - скорость света. Энергия, передаваемая полем частице при ее падении на дно ямы, может пойти либо на увеличение кинетической энергии уже родившейся частицы, либо на то, чтобы превратить виртуальную частицу у верхнего края ямы в реальную частицу, находящуюся на дне.

Что произойдет, если глубина энергетической ямы превысит величину mс2, то есть энергию покоящейся частицы? Тогда при рождении частиц будет выигрываться энергия. Действительно, чтобы создать одну покоящуюся частицу, надо затратить энергию, равную mс2, а энергия, выигрываемая при сбрасывании частицы в яму, превышает mс2. Следовательно, в присутствии сильного внешнего поля возникает неустойчивость: в вакууме будут рождаться и накапливаться частицы до тех пор, пока они не создадут дополнительное поле, которое сделает дальнейшее рождение частиц энергетически невыгодным.

210

Критические условия достигаются тем легче, чем меньше масса рождающихся частиц.

Наименьшую массу среди заряженных частиц имеют электроны. Однако они, как и все другие частицы со спином 1/2, подчиняются «запрету Паули» и не могут накапливаться в большом количестве - в каждом состоянии может находиться только один электрон.

Гораздо более существенная перестройка вакуума должна происходить в таких полях, в которых возможно рождение частиц с целым спином. Тогда нет запрета Паули, и частицы могут накапливаться в состоянии наинизшей энергии в любом количестве. Предел накапливания определяется только отталкиванием частиц друг от друга. Наименьшую массу среди частиц такого типа имеют пи-мезоны, поэтому наиболее интересно исследование свойств пионного поля и выяснение условий, при которых возникает пионная неустойчивость вакуума (неустойчивость по отношению к образованию пионного поля).

Такая неустойчивость может возникнуть в достаточно сильном электрическом поле. Вблизи ядра с числом протонов Z пионная неустойчивость возникает, как показывает расчет, при значениях Z›1500.

Ядра с таким зарядом, если не принимать во внимание возможность перестройки вакуума, были бы неустойчивы из-за громадного кулоновского отталкивания протонов. Однако расчет энергии, выигрываемой от перестройки вакуума, показывает, что этот выигрыш может превысить потерю энергии из-за кулоновского отталкивания. В результате такие «сверхзаряженные» ядра могут оказаться устойчивыми, и не исключено, что они возникли в процессе эволюции Вселенной. В этом случае следует пытаться искать их в космических лучах.

Наиболее интересна пионная неустойчивость вакуума, которая проявляется в достаточно плотной нуклон-ной среде (в среде, состоящей из нейтронов и протонов). Поскольку пи-мезоны сильно взаимодействуют с нуклонами, такая среда создает ту потенциальную яму, в которой при достаточной плотности возникает неустойчивость вакуума. Как мы увидим, неустойчивость пионного поля в нуклонной среде приводит к большому количеству важных физических следствий и может быть проверена экспериментально. Обсудим это явление более подробно.

Пиониая конденсация

Эффективная потенциальная яма для пионов, создаваемая нуклонным веществом с плотностью п, имеет глубину

U = nA,

где А - амплитуда рассеяния пиона на нуклоне (квадрат этой величины определяет сечение рассеяния). Величина А играет роль глубины ямы, создаваемой одним нуклоном. Неустойчивость вакуума относительно рождения пионов наступит при увеличении плотности, когда глубина ямы сделается больше, чем энергия покоя пиона:

U = nА \gg m_\pi с2.

Критическая плотность, при которой начинается перестройка вакуума:


n_c=(m_\pi с2)/A.

В действительности все обстоит не так просто. Во-первых, амплитуда рассеяния мала при малом импульсе (напомним, что количество движения - импульс - масса X скорость) пионов. И неустойчивость возникает не для покоящихся пионов, а для пионов с импульсом, для которого амплитуда рассеяния максимальна. Этот импульс порядка m_\pi с. Кроме того, при большой плотности нуклонов в этой простой формуле появляются дополнительные слагаемые, которые пока можно найти только приближенно. Поэтому значение критической плотности известно не очень точно: можно только сказать, что она близка к равновесной плотности ядерного вещества (к плотности атомных ядер). Мы будем обозначать эту плотность n0. Таким образом n_c\simeq=n_0.

Итак, в нуклонной среде с плотностью, большей, чем nс возникает пионное поле. Когда оно делается достаточно большим, отталкивание между пионами уменьшает яму и процесс останавливается. Когда плотность нук-лонного вещества заметно превышает критическое значение, глубина ямы делается больше энергии покоя, - при конденсации выигрывается энергия. Энергия Е_\pi , которая освобождается при конденсации, пропорциональна квадрату превышения плотности над критическим значением:

Е_\pi =\alpha(n-nс )2.

Это явление называется «пионной конденсацией». Пионное поле, возникающее при конденсации, называют «конденсатом».

Пионная конденсация приводит к возможному существованию сверхплотных ядер, о которых мы говорили во вступлении, а также ко многим другим физическим следствиям.

Пока такие ядра не обнаружены. Их поисками заняты физические лаборатории многих стран. Теоретическое исследование пионной конденсации и ее следствий началось в 1971 году с работы автора этой книги и продолжается до сих пор во многих научных центрах.

Неустойчивость ядерного вещества при большой плотности

Самое важное следствие пионной конденсации - неустойчивость нуклонного вещества, которая может возникнуть в результате конденсации. Поясним, в чем физическая причина этой неустойчивости. Пусть критическая плотность нуклонов nс , соответствующая пионной конденсации, превышает равновесную плотность n0 ядерного вещества. Покуда нет конденсации, энергия ядерного вещества возрастает с увеличением плотности по сравнению с равновесным значением.

Однако при появлении конденсата, то есть при n›n_c, выигрывается энергия. Если выигрыш энергии нарастает с увеличением плотности быстрее, чем проигрыш от сжатия, то наступает неустойчивость ядерного вещества. Иными словами, при возникновении пи-конденсата жесткость ядерного вещества уменьшается. Если же жесткость сделается отрицательной, то ядерное вещество станет неустойчивым.

Можно ли вычислить изменение жесткости ядерного вещества при конденсации и тем самым установить, возможно ли существование более плотного равновесного состояния ядер? К сожалению, в расчеты входят недостаточно хорошо известные в настоящее время величины, характеризующие взаимодействие нуклонов и пи-мезонов в ядерном веществе. Предварительные оценки говорят в пользу того, что одновременно с возникновением конденсации наступает и неустойчивость ядерного вещества. Если эти оценки подтвердятся дальнейшим развитием теории и эксперимента, из этого будет следовать, что ядерное вещество должно сделаться неустойчивым уже при плотностях, близких к плотности ядерного вещества в атомных ядрах.

Эта неустойчивость может означать, что наряду с обычным состоянием ядерного вещества, которое существует в атомных ядрах, есть еще одно (или больше чем одно) необычное устойчивое состояние с большей плотностью. Иными словами, возможны аномальные ядра.

Нет ли пионного конденсата в обычных ядрах? Расчеты дают недостаточно точные значения интересующих нас величин. В частности, неточность в вычислении критической плотности пс такова, что можно допустить обе возможности: критическая плотность пс может быть как меньше, так и больше равновесной ядерной плотности По. Если критическая плотность пс ‹п0, то пионный конденсат должен существовать в обычных ядрах.

Присутствие конденсата в обычных ядрах привело бы к большому числу интересных физических следствий, которые можно обнаружить на опыте. Как показывает расчет, конденсатное поле в ядерном веществе должно периодически изменяться в пространстве. Эти периодические изменения передаются нуклонам и приводят к периодической структуре плотности нейтронов и протонов. Периодическая структура плотности протонов, то есть плотности заряда, могла бы проявиться в рассеянии электронов на ядрах или повлиять на вращательные свойства ядер. Особенно чувствительны к существованию периодической структуры такие процессы рассеяния, которые не происходят в однородном ядерном веществе. Эксперименты подобного рода, по-видимому, показывают, что конденсата в ядрах нет, то есть что пс ›п0. Однако есть много ядерных явлений, которые можно объяснить только близостью к пионной конденсации.





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх