ВНУТРЕННЯЯ СИММЕТРИЯ

…от явлений к законам природы, от законов природы к симметрии…

Е. В и г н е р

Нам предстоит обсудить еще один тип симметрии, так же оплодотворяющий современную физику, как и пространственные.

Существуют «внутренние симметрии», которые означают неизменность явлений не при отражениях, сдвигах или поворотах в пространстве, а при изменении некоторых внутренних свойств полей или частиц. Так, сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.

Каждая внутренняя симметрия, так же как и пространственная, приводит к своему закону сохранения, и наоборот - когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение. Например, электрический заряд сохраняется во всех известных явлениях природы. Симметрия, которая соответствует этому закону сохранения, называется калибровочной инвариантностью. Она пронизывает не только электродинамику, но и всю современную теоретическую физику. Поэтому о ней следует поговорить подробнее.

Электромагнитные поля, взаимодействующие с заряженными частицами, удобно описывать с помощью так называемых «векторных потенциалов». Между тем силы, действующие на заряженные тела, определяются не непосредственно векторным потенциалом, а напряжен-ностями электрического и магнитного полей. Эти поля выражаются через разности значений векторного потенциала в соседних точках (через «градиенты» векторного потенциала). Можно изменять векторный потенциал, не изменяя при этом напряженности полей. Калнбро

Калибровочная инвариантность

вочная инвариантность, или калибровочная симметрия, означает, что никакие электродинамические явления не изменяются при тех изменениях векторного потенциала, которые сохраняют значения электрического и магнитного полей в каждой точке пространства-времени. Следствия этого свойства электродинамики выполняются на опыте с большой точностью. Какие же изменения векторного потенциала допустимы? Самое простое - добавление к векторному потенциалу постоянного слагаемого, не зависящего от координат. От этого разности значений векторного потенциала не изменятся, и, значит, напряженности будут прежними. Но, оказывается, векторный потенциал допускает гораздо больший произвол - к нему можно добавить определенным образом подобранную функцию от координат и времени без того, чтобы изменились электрические и магнитные поля.

Калибровочная инвариантность должна выполняться в каждой точке пространства, это локальная симметрия.

Калибровочная инвариантность обеспечивает сохранение полного заряда не только во всем пространстве, но и в каждой точке. Заряды могут только перетекать, они не могут исчезнуть в одной области пространства и появиться в другой без того, чтобы возник электрический ток, переносящий заряды.

Хорошо проверенный на опыте закон Кулона тоже есть следствие калибровочной инвариантности, даже малое нарушение этого требования изменило бы закон распространения длинных радиоволн, что противоречило бы нашему повседневному опыту.

Требование калибровочной симметрии было определяющим при создании квантовой электродинамики, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.

Понимание калибровочной инвариантности особенно обогатилось после создания квантовой механики. Волновые функции заряженных частиц изменяются при калибровочном изменении векторного потенциала таким образом, чтобы оставались неизменными уравнения движения всей системы - полей и взаимодействующих с ними частиц. Такая обобщенная калибровочная инвариантность приводит к громадному количеству наблюдаемых следствий.

Неотличимость одинаковых частиц

Не менее важная симметрия возникает как следствие принципиальной неотличимости одинаковых частиц. Никакие физические явления не должны изменяться при перестановке двух одинаковых частиц, например, двух электронов или двух нейтронов. Это требование называется «перестановочной симметрией тождественных объектов».

Два туриста, боясь перепутать одинаковые палки, выкрасили их в разные цвета. Но тут же поняли, что достаточно было покрасить лишь одну. Если же подумать еще немного, то станет ясно, что в покраске нет необходимости - два идеально одинаковых предмета спутать нельзя. Марк Твен, рассказывая о своем брате-близнеце, утонувшем в корыте, замечает: «Никто так и не узнал, кто на самом деле утонул, я или мой брат». Ведь если они действительно одинаковы, нет способа установить замену. Это непроверяемое, а значит, ненаучное утверждение. Вспомним наши рассуждения о ненаучных вопросах в главе «О психологии научного творчества».

В квантовой механике состояние системы описывается волновой функцией. Физические величины выражаются через эту функцию квадратично. Поэтому есть две возможности, не нарушающие перестановочную симметрию: во-первых, при перестановке частиц волновая функция не изменяется; и во-вторых, волновая функция изменяет знак при такой перестановке.

В работе, оказавшей огромное влияние на всю последующую физику, Вольфганг Паули показал, что первая возможность осуществляется для частиц с целым спином, а вторая - для частиц с полуцелым спином*

Но поясним, что такое спин частицы.

Элементарные частицы можно представить себе как маленькие вращающиеся волчки. Они характеризуются своим моментом количества движения. Как мы увидим в следующей главе, согласно квантовой механике угловой момент системы может принимать не любые значения, он изменяется скачками величины h (h - та самая постоянная Планка, которая определяет скачки в энергии электромагнитного поля и о которой мы говорили во второй главе, рассуждая о физических парадоксах). Угловой момент естественно измерять в единицах h, и такой момент называется «спином». Он может принимать целые или полуцелые значения. Так, спин электрона в атоме водорода в основном состоянии равен 1/2, а в возбужденных состояниях принимает значения 1/2, 3/2, 5/2… Спин атома гелия в основном состоянии 0, а в возбужденных: 0, 1, 2, 3… Спин покоящихся электрона, нейтрона, протона равен 1/2.

Дискретность возможных значений момента количества движения совершенно незаметна в обычной жизни, так как h очень мало (h = 10^{-27} в системе CGS). Проекции момента на какую-либо ось тоже принимают значения, отличающиеся на h. Так как проекция вектора на ось, скажем, z есть его длина, помноженная на косинус угла между вектором и осью г, то и угол может принимать только дискретные значения. Таким образом, квантовый волчок может наклоняться не под любыми углами. Разумеется, и эта дискретность находится так же далеко за пределами измерительных возможностей обычной механики.

Иное дело - малые объекты - атомы и молекулы, электроны и нуклоны. Там дискретность возможных значений вектора момента и его проекции проверяется непосредственно. Так, проекция спина 1/2 может принимать только два значения: 1/2 и -1/2, и здесь дискретность очень заметна. Частица со спином 1 имеет только три возможных проекции: +1,0,- 1. Число проекций возрастает с увеличением спина. У тел с макроскопическим моментом, то есть с огромным спином, значений проекций момента так много, что дискретность невозможно заметить.

Самый простой способ найти спин - это определить число его проекций. Число проекций у частиц со спином 1 равно 21+1. Кроме того, спин частицы влияет на зависимость сечения рассеяния от угла отклонения.

Таким образом, волновая функция изменяет знак при перестановке, скажем, двух электронов (спин электрона равен 1/2) и не изменяется при перестановке двух пи-мезонов (спин пи-мезона равен нулю). Теперь уже нетрудно понять принцип «запрета Паули», относящийся к частицам с полуцелым спином: если две частицы с полуцелым спином находятся в одинаковом состоянии, то их перестановка не может изменить волновую функцию. Между тем, по теореме Паули, волновая функция должна была бы изменить знак. Следовательно, такая волновая функция равна нулю. Но волновая функция определяет вероятность нахождения частицы в данном состоянии: если она равна нулю, значит, такое состояние невозможно - две частицы с полуцелым спином не могут находиться в одинаковом состоянии.





 


Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх