Объять необъятное

Другое направление, по которому развивалась физика, - поиски единых причин для явлений разного круга, попытки объединения различных областей физической науки.

Важный шаг на этом пути был сделан Ньютоном. Он доказал, что падение тел на Земле, движение Луны вокруг Земли и движение звезд определяются одной причиной - притяжением с силой, обратно пропорциональной квадрату расстояния. Он показал, что все эти явления можно количественно рассчитать с помощью сформулированных им законов механики.

Следующий, не менее грандиозный шаг сделал Джеймс Максвелл. Он получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики - Людвиг Больц-ман сказал об уравнениях Максвелла: «Не бог ли начертал эти письмена?»

В начале XX века физики знали только два типа взаимодействий - электромагнитное и гравитационное. Уже первые исследования атомных ядер показали, что нейтроны и протоны, входящие в состав ядра, удерживаются силами, в десятки раз большими электромагнитных. Эти частицы связаны сильными взаимодействиями. Кроме того, были обнаружены гораздо более слабые силы между электронами, нейтрино и нуклонами (нейтронами и протонами). Эти взаимодействия ответственны за радиоактивный распад и названы «слабыми». Они вызывают, в частности, превращение свободного нейтрона в протон, электрон и антинейтрино.

До недавнего времени казалось, что между четырьмя взаимодействиями - сильным, слабым, гравитационным и электромагнитным - не существует никакой связи. В последние десятилетия усилия физиков были направлены на их объединение. Электромагнитное и слабое взаимодействия объединяются в «электрослабое». Они, как мы уже упоминали, оказались проявлениями более общего единого взаимодействия. В чем красота такого объединения?

Возникли неожиданные связи между разнородными явлениями. Так, постоянная, определявшая величину слабого взаимодействия, оказалась связанной с зарядом электрона. Теория объяснила многие явления, казавшиеся ранее загадочными.

Еще далека от завершения, но, можно надеяться, на верном пути теория Великого объединения, которая даст единое объяснение электромагнитным, слабым и сильным взаимодействиям. Согласно предсказаниям этой теории протон не стабильная частица, время распада протона на позитрон и нейтральный пион или на нейтрино и положительный пион составляет примерно 1030-1033 лет. Уже поставлен ряд опытов по проверке этого предсказания. Если распад обнаружится, то, по крайней мере, подтвердится идея Великого объединения.

В последнее время многие теоретики пытаются создать теорию Суперобъединения, которое охватило бы все четыре взаимодействия - сильное, электромагнитное, слабое и гравитационное.

У Пастернака есть строки: «В родстве со всем, что есть, уверясь и знаясь с будущим в быту, нельзя не впасть к концу, как в ересь, в неслыханную простоту…» К сожалению, пока попытки объединения слишком сложны, и пройдет немало времени, прежде чем откроется «неслыханная простота». Картина только начала возникать. Она еще недостаточно красива и, значит, далека от истины. И тем не менее уже сейчас ясно, что мы на пути к более глубокому пониманию величественной красоты, скрытой во Вселенной.

Поиски симметрии законов природы показывают, как извилист путь к научно доказанной истине, как иногда приходится отказаться от утверждений, казалось, незыблемых, и как внезапно возникают неожиданные связи между совершенно разнородными явлениями. Вопросы, о которых сейчас пойдет речь, касаются самых глубоких свойств Вселенной - связи законов природы со свойствами пространства и времени. Это вопросы, которые определяют характер нашего понимания мира.

Законы сохранения вытекают из симметрии пространства и времени

Существует поразительная и в то же время естественная связь между свойствами пространства и времени и так называемыми «законами сохранения», такими, как закон сохранения энергии или закон сохранения количества движения. Эту замечательную связь сформулировала немецкий математик Эмми Нетер (1882-1935).

СИММЕТРИЧНО ЛИ ПРОСТРАНСТВО?

Симметрия обозначает тот внд согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией.

Гермаи Вейль

Каждому виду симметрии соответствует свой закон сохранения. Так, закон сохранения энергии - следствие симметрии природы относительно сдвигов во времени. Симметрия относительно сдвигов в пространстве приводит к закону сохранения количества движения, или импульса. Мы часто пользуемся этим законом, на нем основано ракетное движение. Так как полное количество движения должно сохраняться, то импульс самой ракеты (произведение ее массы на скорость) увеличивается на величину импульса, уносимого вылетающими газами.

Симметрия относительно поворотов приводит к сохранению момента количества движения, или углового момента, частицы. Для частицы, движущейся по окружности, момент есть произведение расстояния от частицы до центра вращения па массу и скорость частицы. Для неточечных тел нужно сложить моменты отдельных, достаточно малых частей тела. Законом сохранения момента широко пользуются балерины: приближая руки к телу, они уменьшают расстояние до оси вращения и в силу сохранения момента увеличивают ско-

рость вращения. Надеюсь, балеринам будет приятно узнать, что их пируэты получаются благодаря симметрии пространства относительно поворотов.

Попробую пояснить, как неравномерность хода времени приводит к несохранению энергии. Допустим, что неравномерность хода времени проявилась в том, что начиная с некоторого момента стала периодически изменяться постоянная всемирного тяготения. Тогда легко построить машину, которая будет получать энергию из ничего, - «вечный двигатель». Для этого нужно поднимать грузы в период слабого тяготения и превращать приобретенную ими энергию в кинетическую, сбрасывая грузы в период увеличения тяготения. Видите, неравномерность хода времени, то есть изменение относительного ритма разных процессов, приводит к нарушению закона сохранения энергии.

Теперь не покажется странным, что законы сохранения энергии и других величин выполняются во всех явлениях природы. Ведь они вытекают из такого общего свойства нашего мира, как симметрия пространства и времени.

Из сказанного следует, что однородность хода времени можно проверить по тому, насколько точно выполняется закон сохранения энергии. Если у нас возникло ощущение, что в юности время шло быстрее, свет горел ярче, краски были свежее, мысли острее, его нужно объяснять изменениями, происходящими внутри нас, а не изменением хода времени; время течет равномерно. И, как ни удивительно, для доказательства достаточно убедиться, что в бездушных машинах энергия с большой точностью сохраняется. И наоборот, только из того факта, что атомы во все времена испускают свет с колоссальной точностью одной и той же частоты, можно заключить, что с такой же точностью выполняется закон сохранения энергии.

Почему сердце слева?

Зеркальная симметрия законов природы означает, что если две экспериментальные установки отличаются только тем, что одна есть зеркальное отражение другой, то такие установки работают совершенно одинаково.

Но разве не нарушается это требование в повседневной жизни? Примеров нарушения зеркальной симметрии в природе немало. У людей сердце расположено с левой стороны, а для соблюдения зеркальной симметрии в процессе эволюции должно было получиться равное количество лево- и правосердечных. Однако при более внимательном взгляде противоречие разъясняется. Рассмотрим объект менее сложный, чем человек. Существуют, например, два типа кварца, которые по своему молекулярному строению зеркально подобны, как правая и левая руки. Эти два типа кварца встречаются на Земле в различных количествах. То же относится и к другим минералам. Поэтому асимметрию живых объектов можно объяснить тем, что пища или «строительный материал», встречающийся в природе, не имеет зеркальной симметрии. Тогда вопрос сводится к более простому - к нарушению зеркальной симметрии в мертвой природе.

В связи с этим следует вспомнить об одном удивительном опыте Луи Пастера.

Было известно, что поляризованный свет, проходя через виннокаменную кислоту, встречающуюся в природе, изменяет направление поляризации - направление электрического поля в световой волне. Поляризованный свет - свет с фиксированным направлением поляризации - получается после прохождения обычного света через поляризатор - устройство, пропускающее свет только с определенным направлением поляризации. На этом основано действие поляроидных очков. Их линзы пропускают свет только с вертикальным направлением поляризации. Между тем свет, отраженный от луж или от мокрого асфальта, имеет преимущественно горизонтальное направление. Поэтому поляроидные очки уменьшают слепящее действие отраженного света. В этом легко убедиться, поворачивая поляроидные очки вокруг горизонтальной оси.

После того как свойства естественной виннокаменной кислоты были хорошо изучены, химики получили искусственную. По всем физическим и химическим свойствам она не отличалась от натуральной. К колоссальному удивлению ученых, когда через синтезированную кислоту пропустили поляризованный свет, обнаружилось, что он не изменил направления поляризации!

Пастер предположил, что искусственная кислота представляет собой смесь двух зеркально симметричных форм, как правая и левая руки. Один тип кислоты поворачивает направление поляризации направо, другой - налево. В результате поляризация не изменяется.

Для доказательства этой гипотезы Пастер вырастил в искусственной кислоте колонию микробов, рассудив, что микробы, приученные к поглощению естественной кислоты, не станут использовать ее зеркальную форму. Героиня сказок Льюиса Кэрролла, современника Пасте-ра, - Алиса - была озабочена таким же вопросом. Приглашая свою кошку в путешествие за Зеркало, она размышляет, можно ли пить зеркальное молоко, не повредит ли оно Китти. Настолько удивительной может быть научная проблема, что кажется на своем месте в волшебной сказке!

Что же обнаружилось? Когда микробы стали размножаться в искусственной кислоте, направление поляризации проходящего света все более и более поворачивалось. Естественная кислота поворачивала плоскость поляризации направо, а синтезированная после размножения микробов стала поворачивать налево! Каковы же были волнение и радость Пастера, когда его догадка подтвердилась таким неожиданным способом! Пожалуй, зто единственный случай в истории физики, когда открытие было сделано с помощью микробов.

Так Пастер блестяще доказал свою гипотезу и показал, что уже низшие организмы имеют приспособления, различающие две зеркальные формы. Тот факт, что при любом способе искусственного получения вещества обе зеркальные формы появляются в одинаковом количестве, лишний раз подтверждает, что процессы симметричны относительно зеркального отражения.

Зеркальная асимметрия в живой природе объясняется, по-видимому, не нарушением зеркальной симметрии, а историческими причинами. Возможно, в той части Земли, где впервые возникла жизнь, случайно оказалось, скажем, больше «правого» строительного материала, и поэтому возникла одна из живых зеркальных форм, которая потом наследовалась.

Различие распространенности правых и левых минералов можно объяснить, предположив, что во время их образования в окружающем веществе были сильные скручивающие напряжения, или, если это была жидкость, сильные вихревые движения. Одна из возможных причин асимметрии - вращение Земли - дает пренебрежимо малое преимущество одной из зеркальных форм по сравнению с другой. Нарушение зеркальной симметрии, вызванное слабыми взаимодействиями, как мы видели, очень мало и вряд ли способно объяснить большое различие в распространенности правых и левых минералов.

Итак, до недавнего времени физики были убеждены, что все законы природы в нашем мире и в зеркальном будут одинаковы. От этого убеждения пришлось отказаться.

Нарушение зеркальной симметрии в слабых взаимодействиях

Примерно тридцать лет назад возникли первые противоречия. Была обнаружена частица - заряженный К-мезон, - которая может распадаться либо на две, либо на три другие частицы - пи-мезоны. Анализ опытов привел физиков к заключению, что здесь нарушается зеркальная симметрия. Закон зеркальной симметрии запрещает К-мезону распадаться обоими способами.

Дело в том, что зеркальная симметрия, как и рассмотренные ранее симметрии относительно сдвигов и поворотов в пространстве-времени, приводит к закону сохранения. Сохраняется величина, которая называется «четностью». Согласно квантовой механике поведение частицы описывается так называемой «волновой функцией». Физические величины выражаются через эту функцию квадратично. По закону зеркальной симметрии свойства частиц не должны изменяться при зеркальном отражении, но это не относится к волновой функции. Например, она может изменить знак. Когда волновая функция не изменяет знака при зеркальном отражении, состояние называется «четным», а когда изменяется - «нечетным». Таким образом, если есть зеркальная симметрия, каждая частица имеет определенную четность. Теперь можно пояснить затруднение, возникшее с К-частицей. Пи-мезон - нечетная частица, то есть в состоянии покоя его волновая функция изменяет знак при отражении. Если К-мезон четный, он может распадаться только на две нечетные частицы, а если нечетный - то только на три. Мы немного упростили рассуждение, но недалеко ушли от истины, надо было бы еще убедиться, что четность вылетающих частиц не изменяется от их движения.

Самый решительный удар по закону зеркальной симметрии был нанесен в 1956 году блестящим опытом по изучению р-распада кобальта, поставленным группой американских физиков (Цзинь-сян By и др.). Кобальт

при низкой температуре был помещен в сильное магнитное поле. При этом ядра поляризуются - их спины (о спине мы еще поговорим) ориентируются вдоль магнитного поля. При \beta-распаде из ядер кобальта вылетают электроны и антинейтрино. Обнаружилось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля. Между тем, по закону зеркальной симметрии острые и тупые углы должны были бы встречаться одинаково часто.

Действительно, посмотрим на отражение этой установки в зеркале. Магнитное поле изменит свое направление по отношению к отраженным предметам на обратное, как винт, который при отражении из правого превращается в левый. Ведь направление магнитного поля определяется из направления тока в катушке, создающей поле, как раз по правилу винта. Поэтому тупые углы к направлению магнитного поля в зеркале превратятся в острые, следовательно, зеркальное изображение опыта выглядит не так, как сам опыт, в прямом противоречии с законом зеркальной симметрии.

Наступил период смятения. Физики стали сомневаться и в других свойствах симметрии нашего пространства. Как казалось в то время, выход из тупика нашли в 1957 году советский физик Л. Д. Ландау и американские Цзун-дао Ли и Чжень-нин Янг. Они предположили, что частицы (электроны, нейтрино, нуклоны), участвующие в р-распаде, зеркально асимметричны; симметрия восстанавливается, только если перейти от частиц к античастицам. Теперь при отражении в зеркале вся картина изменится - не только тупые углы перейдут в острые, но и частицы не перейдут семи в себя. Таким образом, зеркальная симметрия пространства не нарушается, а асимметрия слабого взаимодействия определяется асимметрией участвующих частиц. Существование в нашем мире асимметричных частиц не противоречит симметрии пространства, так же как ей не противоречит асимметрия живых объектов.





 


Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх