«Достоверные» и «недостоверные» работы

Обязателен ли стиль или школа для научного работника, изменяется ли он со временем? Характер избираемых задач и способ подхода к ним должен изменяться с ростом квалификации ученого, с совершенствованием техники и увеличением опыта. Начиная свой путь в науке, лучше не браться за неопределенные, проблематичные работы. Нужно приобрести опыт и овладеть техникой, решая не очень сложные задачи. Существует важнейшее явление: работа, которая «получилась», которую удалось довести до конца, приносит гораздо больше пользы воспитанию качеств научного работника,чем десятки работ, брошенных на середине из-за чрезмерных трудностей. Начинать нужно с «достоверных» задач, которые не требуют введения недоказанных или недоказуемых предположений, а являются следствием полученных раньше результатов. Начинающий научный работник не имеет права на ошибочные работы.

Однако с ростом опыта и числа доведенных до конца «достоверных» работ отношение к «недостоверным» должно измениться.

Надо ли серьезному ученому гордиться тем, что он никогда не делал ошибочных работ? Ошибочных не в смысле тривиальных ошибок, неправильных вычислений или невымытой химической посуды - таких ошибок надо стыдиться, как неблаговидных поступков. Я имею в виду правдоподобные, но необоснованные предположения, неправильность которых выясняется только при дальнейшем развитии науки. С одной стороны, отсутствие ошибочных работ говорит о высокой научной добросовестности и интуиции ученого, а с другой - оно может означать и недостаток размаха и мужества. Не может быть хорошим горнолыжником или мотоциклистом человек, который никогда не падал, значит, он не доходил до предела своих возможностей. Между тем именно «недостоверные» работы, когда они подтверждаются дальнейшим развитием науки, становятся самыми интересными, так как позволяют проверить предположения, положенные в их основу.

И наоборот, абсолютно достоверные работы, которые неизбежно следуют из полученных ранее результатов, часто не дают существенного толчка науке. Сюда же относится вопрос о сравнении теории с экспериментом, который вызывает много споров между физиками-теоретиками и физиками-экспериментаторами. Совпадение теории с опытом не единственный и даже не главный аргумент в оценке теории. Хорошая теоретическая работа представляет собой убедительный вывод из предыдущих достижений науки, которые получены в результате громадного числа многократно проверенных экспериментов. Несовпадение хорошей теоретической работы с опытом означает, что следует пересмотреть предположения, положенные в ее основу, и что произошло какое-то малое или большое открытие. Тогда как совпадение с опытом неправильной теории не делает ее более убедительной. О качестве теории нужно судить по тому, насколько убедительно и непротиворечиво она построена.

Убедительно построенные «недостоверные» теории влияют на развитие науки, даже когда предположения, положенные в их основу, оказываются неверными. Мне хочется рассказать о замечательной работе покойного академика И. Е. Тамма, которая сильно повлияла на физику элементарных частиц. В то время - в 1934 году - только что появилась теория \beta-распада, предложенная Энрико Ферми. В ней был указан механизм превращения нейтрона в протон с испусканием электрона и нейтрино. Основываясь на этом механизме, Тамм построил теорию ядерных сил, то есть сил, удерживающих нуклоны - нейтроны и протоны - в ядре. Основная его идея состояла в том, что один из нуклонов испускает электрон и нейтрино, а другой нуклон поглощает эти частицы. Дальнейшее развитие науки показало, что обмен электронами и нейтрино почти не влияет на ядерные силы. Ядерные силы обусловлены тем, что нуклоны, как и в теории Тамма, испускают и поглощают частицы, но другие, открытые позже. Одна из таких частиц - пи-мезон. Таким образом, исходное предположение теории не подтвердилось. Тем не менее идея о том, что ядерные силы связаны с испусканием и поглощением частиц нуклонами, оказалась не только правильной, но и чрезвычайно плодотворной. Она получила развитие в работе Хидэки Юкавы в 1935 году, где он объяснял ядерные силы обменом частицей, сильно взаимодействующей с нуклонами. Тем самым он предсказал существование пионов за 14 лет до их открытия.

Каждый научный работник должен время от времени задавать себе вопрос: почему такой-то сделал в науке больше, чем я, хотя мой уровень понимания и математической техники не ниже? Ответ чаще всего один: он решается доводить до конца «недостоверные» работы, а я направляю свои усилия на работы «достоверные».





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх