• Раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть».
  • Можно ли поверить волку, что на него охотятся?
  • Почему иммунный ответ при раке неэффективен.
  • Что делают для стимуляции противоракового иммунитета.
  • Иммунологи диагностируют рак.
  • Да, верю.
  • Аллергия — еще один промах иммунитета.
  • «Сумасшедшая полиция».
  • Иммунная система состоит из тысячи лимфоцитных клонов. Теория иммунитета.
  • Откуда берутся иммунологи? Какие вузы их готовят?
  • Рак, аллергия и другие промахи иммунитета

    Раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть».

    — Иммунная система организма направлена на то, чтобы уничтожать любые клетки, которые были или стали чужеродными, не так ли?



    Рак, аллергия и другие промахи иммунитета


    — Так.

    — Следовательно, прежде чем начать разговор о роли иммунной системы в противораковой защите, необходимо спросить, несут ли раковые клетки какие–то признаки чужеродности?

    — Совершенно верно. Этот вопрос первый. Но многим он кажется очевидным a priori, то есть без доказательств.

    — А мне так не кажется. Ведь раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть», распознать и уничтожить.

    — Вы правы.

    Первым и обязательным условием для рассмотрения роли иммунной системы в противораковой защите является наличие у раковых клеток чуждых данному организму антигенов. Это очевидно, потому что в противном случае иммунной системе нечего будет уничтожать, ибо она истребляет только чужеродные субстанции. Поэтому вся проблема иммунологии опухолей началась с поисков раковых антигенов. Пионером в этой области был советский иммунолог Лев Александрович Зильбер.

    Еще в 1949 году Зильбер разработал метод, доказывающий антигенные различия между раковыми и нормальными клетками.

    Сообщение об этом было встречено скептически или «в штыки».

    Скептически — это понятно. В науке никогда не достаточно одного аргумента. Нужны дополнительные доказательства, подтверждения другими методами и другими авторами. «В штыки» потому, что сообщение Зильбера было воспринято как попытка доказать вирусную теорию возникновения рака. Впрочем, Зильбер был склонен считать именно так: коль скоро в опухоли обнаружены чужеродные белки, значит, это вирусы.

    Многие исследователи и врачи не могли принять такую точку зрения. Все знали, что рак не заразная болезнь и говорить о вирусе — возбудителе рака, подобном вирусу — возбудителю оспы, кори или гриппа, немыслимо. Ведь возникает же рак под влиянием внешних воздействий, например рак губы у курильщиков.

    Пятнадцать лет спустя, когда Зильбер разработал вирусо–генетическую теорию возникновения опухолей, дискуссия о существовании раковых антигенов подходила к концу. Их больше не оспаривали даже в самом простом варианте: для некоторых опухолей животных уже были открыты вирусы–возбудители.

    Вирусы, вызывающие развитие опухолей, получили название онкогенных, рождающих опухоли. Оказалось, однако, что вирус не просто заражает нормальную клетку. Он должен проникнуть в ядро и расположить свою нуклеиновую кислоту (свои гены) среди нуклеиновой кислоты (среди генов) этой клетки. Генетический код клетки, приказы, по которым строятся белки, изменяется. Она начинает строить свое тело по измененным схемам, по измененным приказам.

    В раковых клетках были выявлены и вирусные антигены, и антигены самих клеток, но построенные по измененным приказам. Это было подтверждением вирусо–генетической теории, которая предполагает не простое заражение вирусом, а сочетание вирусной инфекции с врожденными или приобретенными условиями, при которых вирус встраивается в святыню клетки, в ее генетический аппарат. Клетка становится генетически чужеродной. Не вирус, а клетка!

    Но если есть генетическая чужеродность, мы знаем, должен включаться иммунитет. Ибо для него все чуждое чуждо. Такую клетку необходимо уничтожить.

    Это не значит, что вирусная природа рака общепризнана. Иммунологи не утверждают этого. Им, собственно, безразлично, отчего изменяется клетка. Важен факт: раковая клетка несет признаки генетической чужеродности в виде так называемых раковых антигенов. Тем более что существуют раковые антигены невирусной природы.

    Когда онкогенный вирус внедряет свой генетический код (нуклеиновую кислоту) в аппарат наследственности той или иной клетки, эта клетка начинает вырабатывать новый, необычный для нее белок. Она синтезирует его «под диктовку» вирусной нуклеиновой кислоты. В результате у всех клеток вырабатывается один и тот же раковый белок. Одинаковый.

    Опухоль под влиянием вируса может возникнуть в разных местах тела, у разных индивидуумов одного и того же вида и даже у разных видов животных, а раковый антиген будет один и тот же. Это антиген, который «продиктован» генами вируса.

    Совсем иная картина наблюдается при индукции опухолей некоторыми химическими веществами. Вещества эти получили название канцерогенов от слов «канцер» (рак) и «ген» (рождать). Такими веществами являются метилхолантрен, бензпирен и много–много других. К физическим канцерогенам относятся все виды ионизирующих излучений.

    Если действию одного и того же канцерогена подвергнуть десяток совершенно одинаковых организмов, например, мышей одной и той же чистой линии, то каждая из 10 возникших опухолей будет иметь свой раковый антиген. У каждой опухоли свой антиген. Иначе говоря, один и тот же химический агент вызывает разные генетические изменения в разных клетках.

    Онкогенный вирус навязывает всем клеткам одинаковую программу. Канцероген действует по законам случайностей. У одних клеток одни изменения, у других другие. Генетики и онкологи изучают механизмы этого явления.

    Для иммунологов самое главное в том, что раковые клетки всегда несут на себе признаки чужеродности в виде раковых антигенов.


    Можно ли поверить волку, что на него охотятся?

    — Я не могу поверить, будто иммунная система защищает организм от раковых клеток только на основании того, что эти клетки имеют необычные антигены.

    — Почему?

    — Это все равно, что поверить волку, будто на него охотятся.

    — Но ведь на него действительно охотятся?

    — Тогда покажите охотников.

    — И вы поверите?

    — Поверю, но, весьма вероятно, возникнут новые вопросы.

    По–видимому, Горер — английский исследователь — был первым человеком, который еще в 1942 году доказал появление в крови животных–опухоленосителей антител против клеток опухолей. Конечно, сам по себе этот факт не доказывал, что иммунная система защищает организм от возможности возникновения опухолей. Тем более что в 1952 году молодой исследователь из Бар–Харбора Натан Каллис вместе со своим учителем Жоржем Снеллом, создателем многих пород чистолинейных мышей, столь необходимых для изучения проблемы опухолей, продемонстрировал весьма парадоксальную закономерность. Оказалось, что после прививки животным опухоли в их крови действительно появляются противоопухолевые антитела. Но если взять эту кровь и ввести другому животному, то потом ему легче привить опухоль и она быстрее растет. Антитела не тормозят, а усиливают рост опухоли. Этот феномен они назвали феноменом иммунологического усиления.



    Раковая опухоль


    Вот так противоопухолевая защита!

    Возникла весьма странная ситуация. С одной стороны, был доказан иммунный ответ на опухолевые клетки. С другой стороны, этот ответ не защищает от опухоли, а содействует ее росту. Часть исследователей потеряла интерес к противоопухолевому иммунитету. Другая часть осталась в сомнении: коль скоро иммунный ответ есть, должна быть и защита. Эта часть иммунологов или онкологов продолжала искать защитный иммунный ответ на прививку опухоли.

    Больше всех и наиболее убедительно преуспели американцы Ричард Прэн и Джералд Мэйн. У мышей они индуцировали химическим канцерогеном опухоль. Взяли кусочки этой опухоли и привили группе мышей той же генетически чистой линии, то есть тождественной по всем антигенам. Опухоли стали расти.

    Другой группе мышей той же линии они привили предварительно убитые кусочки опухоли. Кусочки через неделю рассосались. После того как кусочки рассосались, мышам ввели живые клетки этой же опухоли. Они рассосались тоже. Рак не возник. Значит, иммунитет все–таки создается! И как раз именно против опухолевых антигенов, потому что по всем другим антигенам клетки животных одной чистой линии идентичны.

    Проблема приобрела уверенную поступь. В нее включились тысячи исследователей. И следующая увлекательная история была рассказана миру шведскими иммунологами супругами Карлом и Ингегард Хеллстремами. Они разработали метод ингибиции (подавления роста) опухолевых клеток лимфоцитами in vitro, то есть в пробирке.

    Суть метода состоит в следующем. У животного–опухоленосителя берется кусочек опухоли, размельчается и приготавливается взвесь из отдельных опухолевых клеток. Эти клетки можно поместить в питательный раствор в пробирку или в специальную склянку (чашку с плоским дном). Микроскопические клетки садятся на дно и начинают размножаться. Через несколько дней невооруженным глазом видны колонии раковых клеток, которые так разрастаются, что сливаются вместе и затягивают дно чашки сплошным слоем, как пруд тиной. Только это не невинные водоросли, а рак…

    Хеллстремы добавили к этой культуре раковых клеток лимфоциты здорового животного. Ничего существенного не произошло. Лимфоциты не проявили никакой иммунной активности. Раковые клетки размножались и росли обычно. Тогда они решили испытать лимфоциты от опухоленосителя. Если иммунная система сопротивляется росту опухоли, то лимфоциты должны обладать убивающей активностью.

    Хеллстремы были в более выгодном положении, чем предшествующие исследователи. Они вели эти работы в 1969—1971 годах, когда уже было известно, что именно Т–лимфоциты после иммунизации приобретают способность убивать чужеродные клетки. Хеллстремы вводили мышам метилхолантрен — химическое соединение, вызывающее рак, — до тех пор, пока не возникла саркома, одна из форм самого злокачественного рака. Клетки этой саркомы они посеяли в чашки с питательной средой. После этого туда же добавили лимфоциты от нормальных мышей и мышей–опухоленосителей. Лимфоциты от последних оказались иммунными, они проявили противораковую активность — рост опухолевых клеток был значительно подавлен.

    Получив такие результаты, Хеллстремы провели серию исследований с раком кожи у кроликов. Особенность этой опухоли состоит в том, что у большинства животных она разрастается (персистирует), превращается в очень злокачественную карциному и убивает опухоленосителя. У части животных опухоль сама по себе уменьшается (регрессирует) и исчезает. Первая группа кроликов получила название персисторов, вторая — регрессоров. Оказалось, что лимфоциты обеих групп животных в равной мере активны против опухолевых клеток и подавляют их рост. Однако если в ту же чашку добавить, помимо лимфоцитов, кровяную сыворотку, то результаты будут разными. Сыворотка от животных–персисторов отменяет подавляющее действие лимфоцитов, сыворотка от животных–регрессоров его не отменяет.

    Авторы доказали, что сывороточный фактор, мешающий работать лимфоцитам, — противоопухолевые антитела. Хеллстремы назвали их блокирующими и сформулировали очень популярную гипотезу блокирующих антител.

    Согласно этой гипотезе выработка антител, зависящая от деятельности В–системы иммунитета, и клеточная форма иммунного ответа, связанная с деятельностью Т–лимфоцитов, находятся в своеобразных антагонистических взаимоотношениях. Иммунные лимфоциты распознают опухолевые клетки и уничтожают их. Антитела не способны оказать вредное влияние на опухолевые клетки, но, соединяясь с ними, загораживают, блокируют их от губительного действия иммунных лимфоцитов. Судьба опухоли и опухоленосителя зависит от соотношения выработки антител и накопления иммунных лимфоцитов. Перетянет первое — опухоль будет расти, перетянет второе — будет разрушена.


    Почему иммунный ответ при раке неэффективен.

    — Почему же все–таки иммунный ответ при раке неэффективен? Почему рак — это чуть ли не смертный приговор?

    — Этот вопрос одновременно и справедлив и несправедлив.

    — Почему же несправедлив?

    — Да потому, что все мы с вами живы–здоровы и не имеем опухолей благодаря каждодневной эффективной, именно эффективной работе иммунной системы, убирающей все изменившиеся клетки. Так что ее неэффективность — это не правило, а исключение.

    — Ну а почему неэффективен в случаях заболеваний, пусть даже это не правило, а исключения из него?

    Образование и рост опухоли (совокупности клеток, отличающихся в антигенном отношении от организма–носителя) представляют собой иммунологическую загадку. Главный вопрос этой загадки в том, что антигенно чужеродная ткань не отторгается. Ситуация, прямо противоположная той, которая имеет место при пересадке чужеродных тканей или органов. Ведь мы знаем, что минимального генетического отличия пересаживаемой кожи или почки достаточно, чтобы она была распознана как чужая и отторгнута или разрушена.

    Задача иммунологии при пересадке органов — отменить или подавить систему иммунологического надзора. Необходимо добиться ситуации, подобной существующей в организме опухоленосителя, когда антигенно чужеродная ткань не отторгается вследствие неполноценности иммунологического надзора.

    Задача иммунологии при раке обратная: восстановить или усилить систему иммунологического надзора. Вполне возможно, что обе эти задачи едины в своей основе и будут решены одновременно. Придет решение из области трансплантационной иммунологии или иммунологии рака, не столь существенно.

    Каковы же причины неполноценности иммунного ответа против растущей опухоли?



    Иммунитет против рака


    Если говорить честно, никто не знает. Существуют только предположения, более или менее правдоподобные гипотезы. Вот некоторые из них.

    Гипотеза иммунологической толерантности. Для опухолей, вирусная природа которых доказана, предполагается, что вирусные частицы постоянно находятся в клетках этого животного в скрытой, дремлющей форме. Следует подчеркнуть, что они находятся в самом «сердце» клеток, среди ее наследственно го материала, среди генов. Такие вирусные частицы делятся вместе с хромосомами при размножении клеток. Таким образом, они оказываются и в половых клетках; передаются по наследству возникающему зародышу нового организма.

    А так как чужеродные вещества, попадающие в организм во время эмбрионального развития, обеспечивают развитие толерантности, иммунологической неотвечаемости, то рождается организм, который не может реагировать на эти вирусы. И вот, если под влиянием каких–либо факторов эти вирусы активизируются, выходят из дремлющего состояния и начинают превращать нормальные клетки в раковые, иммунная система не замечает этого. Она толерантна.

    Гипотеза иммунодепрессивного влияния опухоли. Предполагается выделение раковыми клетками неизвестных веществ, подавляющих иммунный ответ. Это предположение не имеет серьезных экспериментальных подтверждений. Однако известно, что раковые антигены могут угнетать активность лимфоцитов, блокируя лимфоцитарные рецепторы, как бы ослепляя их. Окруженный антигенами лимфоцит не может найти раковую клетку.

    Очень популярна гипотеза дисбаланса между скоростью развития иммунного ответа и ростом опухоли. В соответствии с этой гипотезой рост опухолевой массы постоянно опережает интенсивность развития и размножения реагирующих на нее лимфоидных клеток. Происходит истощение той части лимфоцитов, которые могут реагировать на эту опухоль, и развивается иммунная беззащитность против нее.

    Еще одна гипотеза кладет в основу закономерности генетического контроля иммунного ответа. Суть ее в том, что у каждого организма есть свой набор генов иммунного ответа. Где–то в самом начале книги уже говорилось о них. Эти гены называются IR–генами от слов Immunal Response — иммунный ответ. Гены обозначаются цифрами IR–1, IR–2 и т. д.

    Никто еще точно не знает, сколько их. Но каждый из них заведует способностью реагировать на тот или иной конкретный антиген. Если у какого–то человека «сильный» ген IR–1, он прекрасно и эффективно реагирует на некий антиген X. Но если он у него в «слабой» форме, этот человек не сможет реагировать на антиген X. В то же самое время ген IR–2 может быть у этого человека «сильным», и он, несмотря на свою слабость в отношении антигена X, великолепно справится с антигеном Y.

    Генов много, большинство из них «сильные», и каждый из нас не боится микробов, несущих несколько антигенов. Допустим, микроб несет антигены X, Y, Z. А взятый для примера человек по причине «слабости» гена IR–1 не может реагировать против антигена X. Его лимфоциты распознают чужеродного пришельца и убьют его за счет реакции на антигены Y и Z.

    Ну а если представить себе чуждую клетку, у которой всего один чужеродный антиген? Что будет с нашим героем? Его иммунная система не заметит чужака и не помешает ему жить и размножаться.

    Мы с вами живем благополучно. Набор IR–генов работает исправно. Но у каждого из нас есть несколько генов, относящихся к категории «слабых». Это такой пустяк, что никто его не замечает. В организм проникают микробы и вирусы, они уничтожаются. Среди клеток тела возникают мутации. Изменившиеся клетки тоже уничтожаются. До тех пор, пока не появится такая мутация, вследствие которой возникает антиген, невидимый для иммунной системы конкретного индивидуума. Невидимый потому, что его IR–ген, обеспечивающий реакцию на этот (и только на этот) антиген, относится к категории «слабых». Тогда возникшая раковая клетка не уничтожается, размножается и дает опухоль.

    Вот почему у одного человека раковые антигены одни, у другого другие, у третьего третьи. Вот почему перед иммунологией стоит огромной важности задача научиться превращать генетически слабореагирующую особь в сильнореагирующую.


    Что делают для стимуляции противоракового иммунитета.

    — Наверное, это еще не умеют?

    — Да, в отношении раковых антигенов не умеют.

    — А что же делают, чтобы стимулировать противораковый иммунитет?

    Когда произносишь слово «история», возникают представления о веках или по крайней мере десятилетиях. Например, история борьбы с оспой. Вспоминаются древние китайские медики, которые растирают в ступке струпья с язв больных для вдувания порошка в нос здоровым людям. Потом Эдуард Дженнер, который 200 лет назад приготовил вакцину для людей, использовав коровью оспу. Декреты 1918 года об обязательной вакцинации всего населения страны. История завершилась победой. История большая. Оспы нет.

    Иммунотерапия рака делает сейчас свои первые шаги. Пока еще больше надежд, чем реальных успехов. Но надежды большие.



    Вакцинация


    Самый первый логический шаг опирается на доказательство того факта, что противоопухолевую защиту обеспечивают Т–лимфоциты. Следовательно, для лечения необходимо стимулировать Т–систему иммунитета.

    Как это сделать?

    Вначале показалось, что это очень легко. Есть микробы, которые стимулируют именно Т–систему. К ним относятся возбудители туберкулеза. Конечно, заражать туберкулезом больного раком нельзя. Но ведь есть туберкулезная вакцина, знаменитая БЦЖ, которая состоит из ослабленных туберкулезных палочек и которой безопасно прививают в родильных домах всех новорожденных. Эту вакцину можно вводить людям любых возрастов. Туберкулез не начнется, но стимуляция Т–лимфоцитов будет.

    Многие современные схемы лечения раковых больных включают в себя многократные инъекции вакцины БЦЖ или других стимуляторов Т–системы. Несколько таких схем апробируются совместно американскими и советскими онкологами в Институте рака Академии медицинских наук СССР под руководством академика Николая Николаевича Блохина. Специальное советско–американское соглашение предусматривает такое проведение исследований, которое исключает ошибку. Лучшая схема покажет себя наилучшим образом на обоих континентах.

    Второй путь показался вначале гораздо более реальным. Необходимо извлечь из крови все лимфоциты. А это при современной технике совсем несложно. Существуют специальные сепараторы крови. Они работают по тому же принципу, что и сепараторы для разделения молока на сливки и обезжиренную часть. Сепараторы крови делят ее на сыворотку, эритроциты, лейкоциты, лимфоциты.

    Можно сделать так, чтобы кровь протекала через прибор и возвращалась в организм больного без лимфоцитов. Через некоторое время все лимфоциты соберутся в одном стеклянном сосуде. К ним можно добавить стимулятор, который активирует Т–клетки. Давно известно, что таким стимулятором служит фитогемагглютинин — химическое вещество, выделенное из фасоли. А затем вернуть стимулированные лимфоциты в русло крови больного. И они, подстегнутые, набросятся на опухолевые клетки.

    Казалось, такой прием должен действовать без осечки. Но нет, в простейшем варианте, который только что описан, ничего не получилось. Врач извлекает все Т–лимфоциты, подстегивает их всех, а лечебный эффект сомнительный.

    Эта работа, хоть и не дала метода лечения рака, оказалась очень важной. Она продемонстрировала, что у человека, как и у других млекопитающих, лимфоциты клонированы. Разделены, так сказать, по многочисленным родам войск. Один отряд (клон) лимфоцитов нацелен на одного врага, второй клон на другого и т. д.

    Среди миллиардов лимфоцитов существуют тысячи клонов. Друг друга заменять они не могут. Если клон против опухоли мал, ослаб или был слаб по причине слабого IR–гена, или такого клона вовсе нет, тогда что же стимулировать. Простимулируются все до одного клоны против всего на свете, а этого–то клона нет. А может, такой неполноценный клон под влиянием слишком резкой стимуляции совсем зачахнет. Фитогемагглютинин действительно резкий стимулятор. Гонит всех, а куда — неясно.


    Иммунологи диагностируют рак.

    — Может быть, противораковый клон лимфоцитов следует стимулировать раковым антигеном?

    — А где его взять, если он у каждого свой, особый?

    — У самого больного.

    — Тогда нужен очень чувствительный и точный метод, позволяющий быстро увидеть в малой порции лимфоцитов больного, что они стимулируются антигеном, выделенным из опухоли больного.

    Идея вакцинации опухолевым антигеном — одна из самых старых в молодой истории иммунотерапии рака. Расчет таков. У человека обнаруживается опухоль. Ее можно удалить хирургически. Но коварство рака в том, что опухоль дает метастазы: прорастает соседние ткани, расселяется по другим органам. Это расселение бывает еще до операции, но случается и после, из–за того, что раковые клетки уже циркулировали в крови и где–то осели. Проходит несколько месяцев после операции, и метастазы обнаруживаются в легких, печени.



    Лимфоциты против рака


    Многие исследователи надеются научиться готовить из удаленной опухоли вакцину и вводить ее после операции. Простимулированные прививкой лимфоциты расправятся с метастазами. Но как готовить вакцину, какие антигены извлекать, каким образом быстро и точно увидеть, что лимфоциты больного на эту индивидуально изготовленную вакцину реагируют?

    Один такой подход к оценке реакции лимфоцитов предлагают супруги Черчики из Бирмингама. Любопытен их путь к созданию методики, которую они опубликовали в 1974 году.

    Лет десять назад Черчики и не помышляли об онкологии. Они, ботаники, изучали геотропизм корешков растений, стремление корешков к земле. Можно положить выкопанное растение или даже перевернуть его вверх корнями, все тоненькие корешки начнут расти в сторону земли. Клетки будут размножаться так, что каждая дочерняя клетка расположится по направлению к центру земли. Словно какая–то тяжесть перекатывается на нижнюю сторону клетки и указывает направление деления.

    Так исследователи и предположили: перед делением, когда происходит расструктурирование клеточного тела, специальные гранулы смещаются вниз. Если это верно, то воздействия, увеличивающие расструктурированность, должны увеличивать геотропизм корешков. Это подтвердилось. Облучение корешков рентгеновскими лучами, разрушающее многие клеточные структуры, усилило геотропизм.

    Тогда для регистрации степени расструктурированности тела клеток они приспособили оптический прибор, измеряющий рассеивание поляризованного света. Наладив метод, они задались вопросом, у всех ли клеток перед делением происходит расструктурирование тела. Оказалось, у всех: и у растительных, и у животных. А как у человека?

    Чтобы ответить на этот вопрос, необходимо взять у испытуемого какие–либо клетки, которые способны делиться. Такими могут быть лимфоциты, если их простимулировать фитогемагглютинином. Супруги Черчики добавили к лимфоцитам здорового человека стимулятор и поместили клетки в прибор. Через 20 минут зарегистрировали расструктурирование. Ясно, лимфоциты восприняли сигнал и в течение 20 минут приготовились к размножению.

    Вот тут–то и родился последний вопрос: как поведут себя лимфоциты раковых больных? Оказалось, что за 20 минут под влиянием фитогемагглютинина, этого сильного, но неспецифического стимулятора, расструктурирования тела лимфоцитов не происходит. Но оно возникает у «раковых» лимфоцитов под влиянием белков, выделенных из опухолей.

    Может, с помощью этого метода, может, с помощью другого, но путь будет найден. Онкологи научатся стимулировать Т–лимфоциты целенаправленно против опухоли. Надежды на это большие. Но не только на это. Испытываются и другие пути. Интенсивно отыскивается тимозин — гормон тимуса, от которого зависит нормальная работа Т–лимфоцитов. Испытывается пересадка тимуса. Наконец, происходит апробация сочетания методов иммунной терапии с лучевой терапией и химиотерапией.

    В некоторых случаях иммунологические методы помогают обнаружить рак, поставить правильный диагноз.

    Поставить диагноз «рак печени», «рак кишечника», «рак мозга» — это не только страшно, это и трудно. Не так–то легко обнаружить опухоль, спрятанную внутри тела. А для успешного лечения или хирургической операции ее надо выявить рано, пока она еще не разрослась, не расселилась в виде метастазов по всем органам тела. Идеальный случай — выявление в самом начале развития. Вот тут–то иммунологические методы вне конкуренции.

    Самый яркий пример иммунодиагностики касается первичного рака печени.

    Работами советских исследователей Гарри Израилевича Абелева и Юрия Семеновича Татаринова показано, что клетки рака печени вырабатывают особый антиген, относящийся к эмбриональным белкам. Он назван альфа–фетопротеин. Обнаружение этого белка в крови с помощью специальной иммунной сыворотки бесспорно ставит диагноз: рак печени.

    Продукция эмбриональных антигенов оказалась непременным качеством большинства раковых клеток. Особый эмбриональный антиген, обозначенный КЭА, обнаруживают иммунологи в крови больных раком кишечника. Еще один при раке желудка. Не меньшее значение имеет иммунодиагностика опухолей почек и нервной системы.

    Помимо выявления раковых антигенов, диагностическую ценность имеют исследования лимфоцитов. Например, при нейробластоме. (опухоль нервной системы) у детей лимфоциты приобретают способность разрушать нервные клетки. Это выявляется методом Хеллстремов, о котором уже было рассказано. Иммунодиагностика опухолей совершенствуется с каждым годом.


    Да, верю.

    — Вы верите, что иммунологи будут не только ставить диагноз рака, но и научатся лечить, его?

    — Верю. Но думаю, что это будет их совместный успех с онкологами, хирургами, биохимиками, генетиками. На долю иммунологов выпадает честь научиться ликвидировать промах иммунной системы.

    — А какие еще промахи иммунитета известны науке?

    Всем известно слово «профилактика». Когда говорят, что автомобиль на профилактике, это значит, что механики проводят осмотр машины, устраняют неисправности, делают все, чтобы предохранить ее и водителя от аварии. Отделы охраны труда на предприятиях занимаются профилактикой травматизма. Для профилактики рахита детям дают рыбий жир, содержащий много витамина Д.

    «Профилаксис» в переводе с греческого означает «для охраны». Если добавить другую греческую приставку «ана», то получится совсем другое слово — анафилаксия. Эта приставка меняет смысл слова на обратный. Например, анахронизм — значит неправильное, обратное представление о времени. Анархизм — нечто противоположное порядку.



    Профилактика или…


    Слово «анафилаксия» несет смысл, противоположный профилактике, — противоохрана, не повышение устойчивости, а развитие восприимчивости, возникновение чувствительности. Введение в организм оспенной вакцины создает иммунитет, невосприимчивость к оспе. Обеспечивает профилактику оспы. Но бывает так, что введение чужеродных агентов не предохраняет, а создает повышенную чувствительность к ним, порождает анафилаксию.

    Случайность помогла Теобальду Смиту открыть феномен, который впервые проиллюстрировал, что иммунитет не всегда друг, иногда он может быть причиной смерти. Произошло это в 1904 году. Смит определял антитоксическую силу лошадиной противодифтерийной сыворотки. Для этого лошадиную сыворотку нужно было внутривенно вводить морским свинкам. Для опытов требовалось много этих отнюдь не дешевых животных. И экспериментатор захотел сэкономить свинок. Было решено использовать свинок, которым за несколько недель до этого уже вводили лошадиную сыворотку.

    Сэкономленные свинки выглядели совершенно здоровыми. Да так оно и было на самом деле. Детальное клиническое обследование не выявило бы никаких отклонений от нормы. Поэтому Смит взял шприц и уверенно ввел одному из животных исследуемую сыворотку. Не прошло и минуты, как свинка выразила необыкновенное беспокойство, стала бегать по клетке, учащенно дышать, садиться на задние лапки, а передними чесать нос, как бы стараясь освободиться от чего–то, мешающего дыханию. Ей явно не хватало воздуха. Еще через полминуты начались чихания, потом резкий, лающий кашель. Животное задыхалось, через 2—3 минуты наступила смерть.

    В чем дело? Может быть, при инъекции в вену попал воздух, пузырек которого закупорил какой–нибудь важный сосуд мозга?

    Экспериментатор взял вторую свинку, третью… Картина повторялась, наступал шок. Когда же он взял свежую несэкономленную свинку, не получавшую ранее лошадиной сыворотки, никаких неблагоприятных последствий инъекция не вызывала. Следовательно, предыдущая инъекция сделала животных сверхчувствительными к последующему введению той же сыворотки. Именно той же! Это явление, как и выработка антител, отличается сугубой специфичностью.

    Первичное введение чужеродной сыворотки иммунизирует особым образом. В отличие от реакции на микробы организм вырабатывает не устойчивость к повторному введению, а повышенную чувствительность. Состояние повышенной чувствительности получило название анафилаксии (от слов «ана» — против, «филаксис» — защита), а смерть при описанных проявлениях называют анафилактическим шоком.

    Обратите внимание, никаких микробов, никаких ядов, ничего вредоносного. Просто повторное введение чужеродной сыворотки. И смерть. Но только той же самой сыворотки. Если первый раз вводили лошадиную, то и второй раз должна быть лошадиная. Кроличья не вызовет анафилактического шока. Второе введение ее приведет к шоку при условии первичной инъекции сыворотки кролика. Впоследствии оказывалось, что анафилактический шок может быть воспроизведен не только у морских свинок, но и у других животных.

    Выяснилось также, что анафилаксия — это не просто интересные последствия специально поставленного эксперимента. Это частое и неприятное осложнение в клиниках. У человека при повторном введении ему чужеродной сыворотки тоже может развиться анафилактический шок со смертельным исходом. А ведь введение сывороток — важная лечебная процедура. При ранениях обязательно вводят противостолбнячную сыворотку и, если необходимо, противогангренозную. При дифтерии — противодифтерийную. И почти всегда эти сыворотки готовят, иммунизируя соответствующими токсинами лошадей.

    Если шок не наступает, а его легко, избежать, вводя препарат дробно, малыми дозами, то в ряде случаев развивается затяжное осложнение — так называемая сывороточная болезнь с лихорадкой, сосудистыми расстройствами, зудящими кожными сыпями.

    Я рассказал об опытах Теобальда Смита, которые были опубликованы в 1904 году. А годом позже в журнале «Русский врач» были опубликованы наблюдения Гавриила Петровича Сахарова, который также описал сывороточную реакцию у морских свинок. Свои опыты он проводил тогда, когда еще не знал о «сэкономленных свинках» Теобальда Смита. Еще через год появилось очень подробное исследование этого явления. Его провел Отто — ученик Эрлиха. Отто уже знал о наблюдениях своих предшественников.

    Интерес к анафилаксии возрос. Стало ясно, что это иммунологическая реакция. Что это одна из сторон второго лица иммунитета. Что иммунитет может быть не только другом, но и врагом. Появилась серия работ, демонстрирующих опасность повторного введения немикробных белков.


    Аллергия — еще один промах иммунитета.

    — По–моему, опасность преувеличена. Если повторное введение чужеродных белков может принести вред, не надо их вводить.

    — Повышенная чувствительность к чужеродным белковым веществам не была бы серьезной медицинской проблемой, если бы она распространялась только на искусственное введение чужой сыворотки.

    — А когда еще она появляется?

    — При аллергии.

    Десять лет подряд Сергей Василейский уезжал из Москвы в пору «цветения» тополя. Уезжал на юг, где тополь уже «отцветал», или на север, где еще не «цвел». А в этом году не уехал. И ничего плохого не случилось. Он не только не попал в больницу, как когда–то, но даже, не чихал.

    Дело в том, что Василейский аллергик. С 16 лет его мучили приступы, удушья, жестокий кашель и сердечные расстройства в начале лета. Все это начиналось среди полного благополучия то в середине июня, то в начале июля. В течение нескольких дней болезнь нарастала. Он попадал в больницу. Его «накачивали» хлористым кальцием, димедролом и всякими другими средствами против аллергии. Недели через две болезнь проходила, чтобы в начале следующего лета прийти вновь.

    Он боялся наступления лета, думал, что болезнь приходит вместе с теплом, пока не заметил, что она начинается всегда в тот день, когда в воздухе появляется тополиный пух. Проходит болезнь тогда, когда пух перестает перекатываться по улицам.



    Борьба с аллергией


    Всех раздражает тополиный пух. Набивается в квартиры, лезет в глаза, мешает дышать. В засушливые годы из–за этого пуха возникают пожары. Многие ворчат: «Зачем только эти деревья сажают в городах?» А Василейскому хотелось их вырубить. Но нельзя. И он стал уезжать из Москвы.

    И перестал болеть!

    Подходит июнь, ходит Сергей и каждый день исследует тополевые сережки. Встречают его знакомые:

    — Ты почему до сих пор в Москве?

    — Лето в этом году прохладное, — говорит, — тополь долго не «зацветет».

    Однажды, лет пять назад, приходит Сергей и говорит:

    — Представляешь, тополь не виноват!

    — В чем не виноват?

    — В моей аллергии.

    — А кто же виноват?

    — Тимофеевка, трава такая. Она цветет всегда вместе с тополем. И пыльца ее летает в то же самое время, что и тополиный пух.

    Оказывается, Василейский обратился в один из аллергологических кабинетов, организованных академиком Андреем Дмитриевичем Адо. В таких кабинетах исследуют и лечат людей, страдающих аллергиями, повышенной чувствительностью к тому или иному агенту.

    Каких только форм аллергий нет! Некоторые люди не могут есть яйца, или клубнику, или крабов. Попадает этот «запретный плод» в пищу, не успеет человек из–за стола выйти, как у него появляется зудящая сыпь на теле, развивается сердечная слабость. Нередко приходится вызывать «скорую помощь».

    Хорошо, если человек знает, от чего у него сыпь или удушье. Но чаще больной не знает этого. Мучается годами, а сделать ничего не может.

    Бывает аллергия к духам, кремам, к молоку, к домашней, пыли, к овечьей шерсти, к пыльце ромашки, тимофеевки или другой травы, к стрептоциду, пенициллину и другим лекарствам, краскам, к некоторым сортам мыла и к тысяче других агентов. Почему она карает некоторых людей, никто не знает, но механизм ее такой же, как и при анафилаксии. В организме появляются антитела против того или иного аллергена (так называют агент, вызывающий аллергию). Попадание аллергена на кожу, в пищу или во вдыхаемый воздух приводит к развитию приступа.

    В аллергологическом кабинете Сергея Василейского обследовали на чувствительность к двум десяткам аллергенов, несмотря на то, что он был убежден в виновности тополя. Во время первого обследования в десять точек кожи предплечья тоненькой иглой ему ввели растворы десяти разных аллергенов. В том числе экстракт из тополиного пуха. Ни одна точка не покраснела. Среди первого десятка аллергена не оказалось. Второй раз ввели десять экстрактов из пыльцы десяти разных трав. Одна точка покраснела, вздулась, возник зудящий волдырь. Аллерген для этой точки был приготовлен из пыльцы тимофеевки.

    Так был реабилитирован тополь. Но уезжать на юг или на север все равно приходилось. Как и всегда, Василейский следил за тополем. Но теперь не как за врагом, а как за другом, предупреждающим о времени цветения тимофеевки.

    В июне—июле этого года Василейский не уезжал ни на юг, ни на север. Его аллергия ликвидирована. Он прошел курс специальной иммунотерапии, обеспечивающей отмену повышенной чувствительности к аллергену–виновнику. В его случае отмену аллергии к пыльце тимофеевки.

    Лечение аллергий стало возможным после открытия в 1970 году иммуноглобулинов класса Е. Вы помните, что все антитела относятся к белкам, называемым иммуноглобулинами. Различают три основных класса иммуноглобулинов — М, G и А.

    Это все «добропорядочные» антитела. Их много в крови. Они защищают нас от микробов и вирусов. Проникнет в организм какой–нибудь микроб или чужеродный белок, возникнут антитела этих трех классов и связывают пришельца, блокируют его, не пропускают ни в какие внутренние ткани. Больше всего антител класса G. Они главные блокаторы.

    Если же в ответ на какой–то чуждый агент вырабатываются антитела класса Е (реагины), то дело худо. Эти антитела в крови почти не циркулируют. Они уходят в ткани и присоединяются к клеткам. Аллерген проникает в кровь, а там его никто не блокирует. Он идет дальше — в ткани. Вот здесь, на клеточной территории, и происходит соединение аллергена с антителами. Получается комплекс, далеко не безразличный для клеток и тканей. В результате — болезнь.

    Лечение основано на том, что из аллергена–виновника готовят вакцину и иммунизируют больного до тех пор, пока у него в крови не появятся «добропорядочные» блокирующие антитела класса G. Аллергия исчезает. Эти антитела не дают аллергену проникнуть дальше крови, блокируют его здесь. В ткани аллерген не попадает. Комплекса с реагинами не возникает. Можно не бежать на юг или на север.

    Такова история болезни Сергея Василейского и тысяч других аллергиков. Многие из них страдали десятки лет. И страдали бы еще, если бы иммунологи не открыли тайну реагинов, их принадлежность к особому, ранее неизвестному Е–классу иммуноглобулинов.

    Часто спрашивают, зачем природа создала этот класс антител, если от них одни неприятности. Никто точно не может ответить на этот вопрос. Но коль скоро этот класс белков в небольшом количестве есть у каждого человека и у каждого животного, он зачем–то нужен. Предполагается, что этими антителами обеспечивается защита против некоторых паразитов — глистов, эхинококка и т. п. Обычные антитела не могут причинить им вред, а эти, соединенные с клетками, могут если не уничтожить, то, во всяком случае, организовать вокруг паразита клеточную стенку, отгородить его от жизненно важных тканей и органов.


    «Сумасшедшая полиция».

    — Что значит аутоаллергия?

    — Это не совсем правильное название аутоиммунных болезней.

    — То, о чем упоминалось как о «сошедшей с ума» иммунологической полиции?

    — Да, это когда лимфоциты набрасываются не на чужаков, а на клетки тела, которое они призваны охранять.

    В Институт ревматизма Академии медицинских наук СССР привезли не больных, а мышей. Мышей, которых не было в Советском Союзе. Эту линию мышей вывели экспериментаторы Австралии, а прародительницей линии была черная мышь, пойманная в Новой Зеландии. Так эта линия мышей и называется Нью–Зеланд Блэк, что означает Новозеландские черные.

    Директор Института ревматизма Валентина Александровна Насонова получила этих мышей из США от своих зарубежных коллег в соответствии с советско–американской программой изучения ревматизма и так называемых коллагенозов (болезней соединительной ткани), среди которых особое место занимает системная красная волчанка.



    Приземление


    Зачем понадобились мыши в клиническом институте, задачей которого является лечение больных? Зачем мыши, да еще какой–то особой породы?

    Член–корреспондент Академии наук Насонова — один из крупнейших специалистов в области диагностики и лечения ревматоидного воспаления суставов и системной красной волчанки. Она, как никто другой, знает, что эти заболевания относятся к так называемым аутоиммунным болезням.

    Если перевести на русский язык слова «аутоиммунная агрессия», получится что–то вроде «иммунное нападение на самого себя». Иначе говоря, аутоиммунные болезни возникают от того, что иммунная система «сходит с ума» и начинает разрушать нормальные клетки организма.

    Это уже не просто дефицит в работе иммунной системы, не ослабление ее защитных функций, а извращение, измена. Вместо полиции, охраняющей лояльных граждан, действует «пятая колонна», уничтожающая их. И если раньше думали, что при ревматоидном поражении сустава виновник болезни — сустав, то теперь знают: больна иммунная система. Если раньше считали красную волчанку болезнью кожи и крови, то теперь знают — это не так. Лечить надо не сустав или кожу, а иммунную систему.

    При этих заболеваниях в крови появляются антитела, способные разрушать клетки крови, клетки, покрывающие поверхность сосудов и суставов, и т.д. Появляются, такие агрессивные антитела, что против них не может устоять ни одна клетка, потому что это антитела против главного ядерного субстрата всех клеток, против ДНК. Вы помните, что ДНК — это материал, из которых построен наследственный аппарат клеток, их гены. И вот больная иммунная система вырабатывает антитела, против самого главного, что есть в клетках, — против генетического аппарата.

    Второй сорт аутоантител при ревматоидных заболеваниях — это антитела против антител. Какая–то часть иммунной системы действительно «сошла с ума». Нормальные лимфоциты вырабатывают нормальные антитела против микробов, вирусов и других врагов. В это же самое время «сумасшедшие» лимфоциты вырабатывают антитела против этих нормальных антител — антиантитела. Комплексы антиген — антитело откладываются в суставах, почках и других органах и тканях, нарушая их нормальную работу.

    В Институте ревматизма совершенствуются методы лечения аутоиммунных болезней. Расшифровка их природы дала новые методы, основанные на подавлении иммунитета. Подобно тому как подавление иммунитета при трансплантации почек не дает возможности иммунной системе разрушить пересаженный орган, подавление иммунитета при аутоиммунных заболеваниях отменяет агрессию «сумасшедших» лимфоцитов.

    Конечно, подавление иммунитета с помощью химических средств — это еще далеко не целенаправленное лечение заболевания иммунной системы. Ведь не вся она «сошла с ума»! Часть ее, может быть большая, работает нормально. Нормально выполняет свою «полицейскую» функцию. Изменила только одна группа, один «взвод» или «рота». А мы подавляем всех. Лучшего метода пока нет. Мы еще не умеем выискивать и обезвреживать изменников внутри «полицейской» системы. Вот почему в клинический институт привезли не больных, а мышей.

    У новозеландских черных в шестимесячном возрасте, соответствующем примерно 25 годам человеческой жизни, с неизбежностью развиваются заболевания, подобные ревматоидным болезням людей. Те же антитела против ДНК, те же поражения тканей, то же самое «сумасшествие» некоторых подразделений иммунологического воинства. Эти мыши — незаменимая экспериментальная модель для изучения аутоиммунных болезней и изыскания методов их лечения.

    Именно с помощью новозеландских черных было доказано, что суть аутоиммунных болезней не в изменениях белков больных тканей (суставов или кожи), а в изменении лимфоцитов, часть которых становится агрессивной против нормальных тканей. Именно эти мыши впервые доказали, что причина болезни лежит в иммунной системе, а не в пораженном болями органе.

    Доказательства были бесспорны. У стареющих, уже имеющих аутоиммунные расстройства мышей извлекли селезенку и лимфатические узлы. Из этих тканей выделили лимфоциты и ввели в кровь молодым двухмесячным мышам. В этом возрасте они абсолютно здоровы. Никаких аутоантител у них нет. У них еще не возникла измена иммунологического воинства.

    Лимфоциты, извлеченные из организма стареющих мышей и введенные в кровь молодых животных, содержат изменников. И развиваются все признаки болезни. В организме молодых мышей появился отряд, или, как говорят в иммунологии, клон, «сумасшедших» лимфоцитов.

    Такие клоны Фрэнк Бернет предложил называть запрещенными. Если они появляются, возникает та или иная аутоиммунная болезнь. Это может быть то, о чем только что рассказано, или аутоиммунное поражение щитовидной железы, почек и других органов. Почему возникает тот или иной запрещенный клон, никто не знает. Как убрать именно его, не повреждая других, «несумасшедших» лимфоцитов, тоже пока никто не знает. Задача иммунологии — найти способы удаления этих клонов.


    Иммунная система состоит из тысячи лимфоцитных клонов. Теория иммунитета.

    — Что такое клон и обязательно ли он вреден?

    — Нет, иммунная система состоит из тысячи лимфоцитарных клонов.

    — Из тысячи?

    — Может быть, и больше.

    Кажется, уже все привыкли, что мужество ученого питается его верой в свою идею. Мужество ученого — это беззаветное отстаивание своей идеи, это костер, на который он готов взойти за нее. Но есть и другое мужество: признать, что ты не прав, что твоя теория неверна, что она устарела, что ее нельзя отстаивать. Мужество поражения. Впрочем, это не совсем то слово. Мужество объективности. Объективности в оценке собственных идей. Объективности в экспериментах, поставленных «за» и «против» себя, в мнениях других ученых. Мужество сказать: «Я был не прав».



    Распад теории


    Мы уже встречались на страницах этой книги с примерами мужества, неминуемо идущего в ногу с объективностью. На заре иммунитета, когда создавались первые его теории, во времена великой иммунологической дискуссии, ученые–соперники опровергали друг друга и самих себя и открыто признавали свои ошибки. Они проявляли мужество, они шли вперед.

    Собственно, в лагере ученых это не выдающееся явление, это норма. Совсем недавно академик Яков Борисович Зельдович выступил против своей же теории вселенной и выдвинул весьма отличную точку зрения. Ученые не имеют права быть последователями кронинского героя Броуди, который говорил, что он не меняет свои мнения, ибо не считает себя в данный момент умнее, чем был раньше.

    Ученый, если он убеждается, что был не прав, говорит: «Я был не прав». И доказывает своими делами.

    …Фрэнк Бернет, директор Института медицинских исследований в Мельбурне и доктор философии Лондонского университета, автор самой популярной и наиболее правдоподобной теории иммунитета, готовил доклад.

    Его теория, которая наилучшим, образом объясняла многие неизвестные стороны иммунитета, на основании которой было предсказано существование ранее неизвестного феномена, и предсказание сбылось, его теория, просуществовавшая с 1949 года, около, восьми лет, больше не выдерживала, натиска экспериментальных данных. Многие факты оставались необъяснимыми, некоторые стороны теории базировались на предпосылках, опровергнутых современной генетикой.

    Бернет в будущем лауреат Нобелевской премии, готовил доклад, опровергающий его собственную теорию. Теорию, поддерживаемую многими исследователями, приводящими новые и новые доказательства ее правоты. И вот он, ее создатель, намерен выступить против, показать ее самые слабые стороны, ибо кто же знает их лучше, чем он сам!

    Ему вспомнилось первое знакомство с иммунологией. В то время он был студентом Мельбурнского университета, и с тех пор прошло более 40 лет. Бернет стал одним из крупнейших иммунологов мира, а его теория, объясняющая иммунитет, — одной из самых признанных. И эта теория его больше не устраивает.

    Что не удовлетворяло ученого в его собственной теории? В теории, которая предусматривала как будто бы все. Она не объясняла самого основного; как организм узнает чужеродного пришельца, как он отличает чужое от своего. Не объясняла, что происходит при развитии толерантности, когда организм перестает узнавать чужие антигены. Проблема распознавания «своего» и «чужого» — вот центральная проблема иммунологии, и она–то как раз осталась в тени. Ни одна теория не пыталась объяснить, каким образом иммунологическая армия распознает чужеродные клетки, ткани или белки. Его теория тоже не отвечала на этот вопрос.

    Решение выступить против собственной теории возникло давно. Но нельзя просто выступить против. Надо работать, надо найти и выдвинуть что–то новое, более совершенное. Теперь это уже можно сделать. Гипотеза механизма распознавания «своего» и «чужого» построена. Все прочие стороны иммунитета объясняются при этом еще лучше, чем прежде.

    Через две недели Бернет вылетит в Лондон. На суд мировой науки будет предложена принципиально новая теория иммунитета. История мировой науки получит еще один образец мужества объективности.

    Бернет не только опровергнет свою старую теорию, но и покажет наиболее уязвимые места своей новой теории и пути ее экспериментальной проверки или опровержения. И даже если теория окажется неправильной, она заставит ученых проводить новые исследования. Важно, чтобы она вынудила ученых поставить такие эксперименты, которые могут опровергнуть ее, если она не права.

    Какие кардинальные достижения биологии сделали уязвимой предыдущую теорию? Чего нельзя не учитывать при создании новой? Прежде всего того, что поток информации в любой клетке идет от гена к белку. Иначе говоря, материальным носителем информации, то есть «планов», по которым клетка живет и строит свои белки, являются гены в ядре клетки. Химическая структура гена — дезоксирибонуклеиновая кислота (ДНК). Она служит матрицей, по которой с великой точностью строится специфическая для данного гена рибонуклеиновая кислота (РНК). По рибонуклеиновым матрицам строятся специфические белки. Вот весь путь: ДНК — РНК — белок.

    Современная генетика и биохимия доказали, что строение белка определяется строением РНК, а оно, в свою очередь, определяется специфической структурой соответствующего участка ДНК. Чтобы клетка начала синтезировать новый белок, есть только один путь — изменить структуру ДНК. И это действительно случается. Именно случается, поскольку изменения ДНК случайны и, как правило, не соответствуют воздействующим в этот момент влияниям внешней среды.

    Это не значит, что изменения в ДНК нельзя вызвать внешними влияниями. Можно, но не адекватно им. Под влиянием одного и того же воздействия могут возникать самые разнообразные изменения в ДНК (мутации), и, наоборот, под влиянием различных воздействий могут возникнуть одинаковые мутации.

    А между тем чужеродный антиген заставляет клетки вырабатывать белки–антитела соответственно своему влиянию. Антитело — это молекула специализированного белка иммуноглобулина, адекватного антигену. Раньше считали, что антиген, проникая в клетку, сам становится матрицей для синтеза иммуноглобулинов. Генетика и биохимия доказали, что этого не может быть. Белок подчиняется только одной матрице — своей РНК. Возникла мысль, что антиген изменяет РНК. Тоже нет, она подчиняется только одной матрице — своей ДНК. А на ДНК чужеродный белок–антиген направленно повлиять не может. Это закон.

    Новая теория не должна противоречить истинам современной генетики. Новая теория Бернета заимствует основную идею из учения об эволюции, учения о развитии и совершенствовании жизни на Земле.

    Эволюционное учение объясняет совершенствование форм живых организмов постоянно идущим естественным отбором, селекцией. Внешние условия жизни из десятков и сотен тысяч различных особей отбирают наиболее приспособленных. Наиболее пригнанные организмы, естественно, обладают преимуществами, большими шансами выжить, оставить потомство.

    Но откуда берутся эти тысячи различающихся особей, из которых идет отбор? Кто или что служит поставщиком форм для селекции? Таким поставщиком являются мутации. Случайные разнонаправленные изменения генов, о которых уже говорилось.

    Мутации происходят как будто бы не часто, в среднем одна мутация на миллион особей. Но генов очень много. В каждом организме содержится по меньшей мере несколько миллионов генов, контролирующих несколько миллионов соответствующих им признаков. В итоге получается, что в любом достаточно большом сообществе организмов одного вида, или, как говорят, в любой популяции, всегда есть разные варианты организмов, различающихся по тем или иным признакам.

    Раз возникнув, мутации передаются из поколения в поколение, так что в итоге в каждой популяции накапливается огромное количество различных вариантов мутировавших генов и соответственно различные варианты контролируемых данными генами признаков.

    В каждой популяции любых организмов накапливаются тысячи так или иначе различающихся между собой особей, форм для селекции.

    Представьте себе луг. На нем растут сотни тысяч цветов. Мутации привели к тому, что форма чашечек у разных цветов различна. Обозначим условно главенствующие формы как А, Б, В, Г.

    Над лугом постоянно летают насекомые, очень мелкие мушки, которые могут залезть в любую чашечку и на своих крыльях перенести пыльцу в любой другой цветок. Опыление происходит у всех, и каждый цветок имеет равные шансы оставить семена, оставить потомство. Так происходит из года в год. На лугу цветут все цветы — А, Б, В, Г.

    Теперь представьте себе, что наш луг заселили и заняли преимущественное положение другие насекомые, гораздо более крупные. Настолько крупные, что они могут забраться за нектаром только в чашечку формы Б. Цветок с такой чашечкой сразу получает преимущества перед другими. Теперь опыляются главным образом цветки Б, они чаще, чем все другие, оставляют потомство. Работает селекция. Через пару–тройку поколений большинство цветов на нашем гипотетическом лугу будет иметь чашечки формы Б.

    То, что я рассказал, конечно, весьма упрощенная схема. Но без этого было бы трудно объяснить теорию Бернета.

    Иммуноглобулины вырабатываются клетками лимфоидной ткани. Их очень много. Популяция (то есть все количество, весь народ) лимфоидных клеток в человеческом организме измеряется числом 1012. Это не миллионы и даже не миллиарды. Это сотни миллиардов! Представляете, какое количество мутантных, различающихся между собой вариантов клеток среди такой большой популяции.

    Различаются и формулы молекул иммуноглобулинов, синтезируемых разными клетками. И даже если мутировавший ген встречается только один на миллион, то и тогда в популяции из 1012 лимфоидных клеток должно быть 106, то есть миллион клеток, отличающихся друг от друга формой вырабатываемых молекул иммуноглобулина. Среди миллиона вариантов молекул иммуноглобулинов есть самые разнообразные. И какой бы антиген мы ни взяли, для него найдется подходящая, как ключ к замку, молекула. Каждая форма клеток вместе с потомками составляет семью, и называется она клоном. Таким образом, вся лимфоидная ткань состоит из клеточных клонов. Она от рождения, так сказать, неоднородна. Клонирована с самого начала.

    Давайте снова вспомним наш луг. Только на нем теперь не цветы. Луг — это популяция лимфоидных клеток. Вместо цветов — клетки, вырабатывающие иммуноглобулины. Различаются они не по форме чашечек, а по форме вырабатываемых глобулинов. Обозначим их теми же буквами: А, Б, В, Г.

    Предположим, в организм проник антиген б. Ему нет необходимости вмешиваться в неприкосновенный для клетки поток генетической информации ДНК — РНК — белок. Молекулы антигена б циркулируют по организму и встречаются с клетками, которые по своей генетической природе вырабатывают адекватные данному антигену иммуноглобулины. Антиген б соединяется с такой клеткой и становится для нее раздражителем. Вследствие этого она начинает ускоренно размножаться, чтобы вырабатывать много соответствующих этому антигену глобулинов–антител, которые в дальнейшем соединяются и нейтрализуют его.

    При каждом делении из исходной клетки возникают две, из этих двух — еще по две и т.д. Клеток клона Б становится много. И если тот же антиген попадает повторно, антитела вырабатываются быстрее и в большем количестве, чем в первый раз.

    Таким образом, антиген явился фактором отбора, фактором селекции данного клона клеток. Вот почему теория Бернета получила название клонально–селекционной теории иммунитета или теории селекции клонов.

    В соответствии с этой теорией иммунная система распознает чужие клетки и белки потому, что она содержит лимфоидные клоны против любых чужеродных пришельцев. Клонов против собственных клеток и белков нет. Они не могут накопиться, потому что возникновение и накопление клонов происходят в эмбриональный период развития, когда лимфоидная система еще слаба.

    Как только вследствие мутации появляется клетка, способная в будущем, реагировать против нормальных антигенов «своего» тела, она, так сказать, идет на сближение и пытается начать бой. Но… мала еще, не созрела, не может ответить размножением и гибнет: клон не накапливается. Родившийся организм, таким образом, лишен клонов клеток против собственных антигенов. — Следовательно, дело не в том, что лимфоидная ткань каким–то образом умеет распознавать «свое», а в ней просто нет клеток, которые могли бы вырабатывать антитела против собственных антигенов тела.

    Некоторые считают, что они есть, но молчат. Молчат потому, что тимус, центральный орган иммунитета, вырабатывает специальные клетки, запрещающие всем лимфоцитам работать против «своего». Эти лимфоциты получили название Т–супрессоры, то есть тимические подавители.

    Теория Бернета родила тысячи экспериментов и идей по проверке, подтверждению и опровержению. Эта работы вскрыли новые важные факты и закономерности в иммунологии. Теория совершенствовалась, и совершенствуется. Идея клонированности подтвердилась полностью, механизмы работы клеток уточняются. Изучается, какие болезненные расстройства приводят к появлению и накоплению «запрещенных» клонов, агрессивных против нормальных клеток тела. Появляются данные, свидетельствующие в пользу того, что аутоиммунные болезни развиваются не вследствие появления запрещенных клонов, а вследствие исчезновения клонов–супрессоров.

    Бернет, критически анализируя слабые стороны теории, всегда подчеркивает, что положительный эффект теории еще и в том, чтобы вызвать поток исследований, подтверждающих или опровергающих ее. Рассуждениям Бернета созвучны слова известного биолога Джона Лилли:

    «Если же окажется, что я кругом не прав, я буду утешаться сознанием, что в истинно научных исследованиях ни один опыт нельзя считать напрасным: даже при экспериментальном опровержении какой–либо теории выявляются новые и ценные данные».


    Откуда берутся иммунологи? Какие вузы их готовят?

    — Ответить на этот вопрос не просто, потому что специальность «иммунология» не значится в перечне дисциплин, которые преподают в учебных заведениях, будь то университеты, медицинские институты или что–либо другое.

    — Следовательно, институтов, в которых готовят иммунологов, и кафедр иммунологии не существует?

    — Существует! Есть такой институт и есть такая кафедра.

    Случилось так, что тринадцать лет назад в сентябре 1963 года в издательство «Медицина» было послано письмо с предложением подготовить учебник или учебное пособие по иммунологии. 10 ноября пришел ответ: «Государственное издательство медицинской литературы сообщает, что Ваше предложение об издании пособия для студентов не может быть принято, так как в списке вузовских дисциплин, утвержденных Минздравом СССР, нет дисциплины «Иммунология».

    Откуда же взялись иммунологи, если их нигде не готовят? А ведь их не так мало. В 1971 году возникло Международное общество иммунологов. К моменту открытия Второго международного конгресса иммунологов, который состоялся в июле 1974 года в английском городе Брайтоне, в этом обществе уже было 8634 человека. Даже в таких небольших странах, как Польша или Голландия, иммунологические общества объединяли 317 и 365 ученых. В Японии было 1240 членов иммунологического общества, в Англии —1591, в США — 1662.

    В прежние годы, когда иммунология еще не стала новой и занималась в основном проблемами предупреждения заразных болезней с помощью вакцин, она целиком находилась во власти микробиологии. Ее проблемы были как бы привязаны к микробам — возбудителям инфекционных болезней. И хотя иммунная система принадлежит не микробу, а организму, в который тот внедряется, на нее тоже смотрели сквозь «призму, выточенную из микробов». Проблемами неинфекционной иммунологии мало кто занимался. Но все–таки занимались. И большинство современных иммунологов вышли из микробиологии. Есть выходцы и из биохимии, физиологии, хирургии.



    Успех микробиологии


    Путь из микробиологии наиболее естествен. В научной судьбе исследователя как бы повторяется в сжатом виде история иммунологии. Микробиологические проблемы той или иной инфекционной болезни порождают проблемы иммунизации против нее. Работа в этом направлении ставит более общие вопросы по изучению иммунной системы. Если они становятся главными для ученого, то… «конь ускакал и уздечку унес». Исследователь фактически перестал быть микробиологом.

    Будет ли он хорошим иммунологом, неясно. Для этого ему придется не только много работать в новой для него области, но и познать ее. Познать самостоятельно, без университетов. Познать с помощью научных журналов, книг, библиотек, конференций и общения с хорошими иммунологами.

    Путь из биохимии лежит обычно через увлечение проблемами строения молекул, участвующих в иммунных реакциях, закономерностями их синтеза и взаимодействия. Это действительно увлекательная задача: выяснить, каков химический язык машины узнавания чужеродных субстанций. А ведь иммунная система организма должна не только распознать чужеродного пришельца, но создать оружие для его уничтожения и совершить выстрелы. Выстрелы фантастической точности, чтобы в клеточной сутолоке не задеть своих.

    Выход физиологов на иммунологические тропы чаще всего лежит через джунгли эндокринной системы, то есть системы органов, вырабатывающих гормоны — регуляторы жизнедеятельности организма. Маленькая железа в основании черепа — гипофиз — продуцирует гормоны роста. Щитовидная железа, расположенная на шее впереди гортани, выделяет гормон, регулирующий интенсивность обмена веществ. Над самыми почками расположены маленькие органы, так и называемые надпочечниками, которые вырабатывают целую серию гормонов, прямо влияющих на лимфоидную ткань, то есть на иммунную систему.

    Увлечется физиолог гормональной регуляцией деятельности иммунной системы и нырнет с головой в иммунологию. Трудно ориентироваться в новой области. Да и друзья косятся: изменил–де физиологии, увлекся какой–то новой дисциплиной, погнался за модой. Но иммунология захватывает. Захватывает навсегда!

    Десятки лет ни одно учебное заведение не выпускало иммунологов, а их становилось все больше и больше. Ни в одном университете, ни в одном медицинском, ветеринарном или сельскохозяйственном институте не было кафедр иммунологии. А наука об иммунитете разрасталась.

    Так было до 1965 года. Не только в нашей стране, но и во всем мире. Иммунологи вырастали отовсюду. Крупнейшие иммунологи современности, о которых рассказывалось в книге, по–разному пришли в иммунологию. Фрэнк Бернет в прошлом микробиолог–вирусолог, Питер Медавар — зоолог, Родней Портер — биохимик.

    С 1965 года ситуация стала меняться. В некоторых медицинских колледжах Англии, Франции, Америки начали преподавать новый предмет. Стали готовить иммунологов. В Советском Союзе в том же году был организован в Академгородке первый в нашей стране самостоятельный курс неинфекционной иммунологии для студентов четвертого курса медико–биологического факультета Новосибирского университета. Через год эти студенты окончили университет. Один из них, Евгений Грунтенко, теперь уже сам ведет этот курс. Преподавание иммунологии продолжается. Правда, это только лекционный курс.

    В 1966 году специальный комитет экспертов Всемирной организации здравоохранения утвердил документ о преподавании иммунологии в медицинских вузах. В последующие два года этот документ был переведен на все официальные языки ООН.

    В 1970 году самостоятельный курс иммунологии возник на медико–биологическом факультете Второго московского медицинского института. Через год начались практические занятия. Студенты теперь не только слушают современную иммунологию, но и проходят практикум. Появляются первые дипломники. С 1974 года этот курс преобразовался в кафедру иммунологии.

    Современная иммунология разрастается. Все новые силы вливаются в нее. Все новые сферы науки и практики становятся заинтересованными в развитии иммунологии. Эта наука, оказалось, хранит тайны многих болезней, включая опухолевые заболевания. Не случайно в директивах XXV съезда КПСС «Основные направления развития народного хозяйства СССР на 1976— 1980 годы» в разделе «Развитие науки» записано: «Усилить исследования в области молекулярной биологии, физиолого–биохимических и иммунологических основ жизнедеятельности человеческого организма…»










     


    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх