• Сложная машина — иммунитет. Но чем сложнее машина, тем более вероятна ее поломка. Так ли это?
  • Какие дефекты иммунитета известны науке?
  • Прежде чем лечить, нужно поставить диагноз.
  • Иммунная инженерия.
  • Что происходит на старости лет?
  • Врожденные дефекты и старость

    Сложная машина — иммунитет. Но чем сложнее машина, тем более вероятна ее поломка. Так ли это?

    — Сложная эта машина — иммунитет.



    Врожденные дефекты и старость


    — Да, не простая.

    — Но ведь чем сложнее машина, тем более вероятна ее поломка.

    — Это положение спорно. Многие машины делаются сложными именно для того, чтобы предотвратить, подстраховать или даже ликвидировать возникающие поломки.

    — Все равно. Иммунная система, наверное, может выходить из строя, может болеть.

    — Конечно, может. Рассказ о ее болезнях следует начинать с врожденных, или, как их еще называют, первичных, дефектов иммунитета.

    Родился ребенок. Абсолютно здоровый и совершенно нормальный. При самом тщательном медицинском обследовании никаких отклонений от нормы обнаружить не удается. Ребенок растет, хорошо развивается, поступает в школу, хорошо учится, болеет не чаще, чем другие дети, увлекается спортом. Все нормально. Он уже взрослый мальчик, его друзья «гоняют» на мотоциклах, и он хочет иметь мотоцикл.

    Идет на медицинскую комиссию. Заключение хирурга: «здоров». Заключение терапевта: «здоров». Анализ крови: «здоров». Рентгеновское обследование: «здоров». Последний кабинет — глазные болезни. Что проще? Он прекрасно видит. У него первый юношеский разряд по стрельбе из винтовки. И вдруг заключение окулиста: «К управлению транспортными средствами не пригоден».



    Правила движения


    Что такое? Почему? Ведь многие шоферы работают с плохим зрением. Они водят машины в очках. Но этому мальчику очки не помогут. У него врожденный порок зрения, который выявился только теперь. Он не отличает красный цвет от зеленого. Этот порок называют дальтонизмом, потому что Джон Дальтон, известный английский физик, имел этот дефект и описал его с точностью ученого, занимающегося физикой света.

    Второй пример. Врожденный порок сердца. Ребенок совершенно нормальный. Все у него хорошо. Он растет, улыбается, плачет, лепечет «да–да–да». И никто ничего не замечает. Но вот приходит пора ребенку ходить. Возникает первая в жизни физическая нагрузка. Нужна усиленная работа сердца. А сердце с дефектом. Ребенок быстро задыхается, ему не хватает воздуха, сердце не справляется с работой перекачивания крови, обогащаемой кислородом, от легких ко всем остальным частям тела. Кислородное голодание.

    И чем старше становится ребенок, тем труднее сердцу. Он начинает отставать от своих сверстников во всем. Родители, конечно, обращаются к врачу. Врач ставит диагноз: «Врожденный порок сердца».

    Третий пример — дефект иммунологический. Родившийся ребенок, как и первые два, ничем не отличается от нормальных новорожденных. И первые недели жизни, до тех пор пока в его крови циркулируют антитела, полученные в утробе матери и с первым материнским молоком, он может казаться здоровым. Но очень скоро скрытое неблагополучие проявляется. Начинаются бесконечные инфекции — воспаление легких, гнойники на коже, гайморит, отит, опять воспаление легких. И так все время.

    Эти дети особенно сильно отстают в развитии. Они ослаблены, зачастую не могут ходить, неполноценны в интеллектуальном отношении. Ведь они все время болеют. Все время между жизнью и смертью. Раньше, когда еще не было антибиотиков, такие дети вообще довольно быстро умирали — в первый год жизни. Теперь инфекционные осложнения лечат, и в клиниках иммунодефицитов (дефектов иммунной системы) можно встретить детей 10—15–летнего возраста.

    Врожденные дефекты иммунитета делают организм беззащитным против микробов, даже против тех, которые у нормального человека постоянно присутствуют на коже, во рту, в кишечнике. Присутствуют, не вызывая заболевания. При врожденных пороках иммунной системы эти микробы становятся причиной постоянных инфекций, которые в конечном итоге приводят к смерти. Применение антибиотиков помогает организму, но не излечивает его. Лечить нужно иммунную систему. Так же как при врожденном пороке сердца покой или подушка с кислородом помогают больному, но не излечивают его. В одном случае необходимо исправить порок сердца, в другом — порок иммунитета. Первое делают хирурги, второе — иммунологи. Иногда сами, а зачастую совместно с хирургом.

    Врожденные иммунодефициты правильнее называть первичными. Правильнее потому, что это слово подчеркивает иммунологическую первичность всех событий. Иначе говоря, болезнь, отставание в росте и развитии, смерть — все это следствия первичной причины: врожденной дефективности иммунитета.

    Вторичными называют не врожденные, а приобретенные дефекты иммунной системы: например, после воздействия ионизирующей радиации, когда развивается лучевая болезнь. Иммунитет резко ослабевает, так как лимфоидная ткань — орган иммунитета — разрушается облучением. Вторичные дефекты развиваются при тяжелых голоданиях, при отравлениях цитотоксическими ядами. Такие яды лишают клетки способности к делению, к самовоспроизведению. А работа иммунной системы целиком зависит от способности лимфоидных клеток делиться.

    Вот почему назначение многих противораковых препаратов, которые как раз и являются цитостатиками, опасно. Убивая раковые клетки, они нередко губят и клетки иммунной системы. Возникает вторичный иммунодефицит. Больного, которого лечат от рака, приходится все время оберегать или спасать от инфекционных осложнений.

    Слово «первичный» подчеркивает еще одну сторону явления. Его генетическую природу, наследственный характер. Врожденные иммунодефициты относятся к наследственным заболеваниям, подобно гемофилии, некоторым видам глухоты или карликовости.

    Гемофилию еще называют болезнью королей. Впервые в династических описаниях гемофилия зарегистрирована у сына знаменитой английской королевы Виктории. Так как короли и цари женились только на королевнах и царевнах, то эта наследственная болезнь распространилась среди царствующих фамилий Европы. Сын Николая Второго тоже страдал гемофилией.

    Особы женского пола никогда не заболевали. Болели только мальчики. Главный симптом — несвертываемость крови. Из–за этого малейшая ранка могла привести к смертельному кровотечению. Некоторые виды иммунодефицитов совершенно подобны гемофилии по характеру наследования. В этих случаях также болеют только мальчики.

    Женщина в одной из своих Х–хромосом несет «порочный» ген или группу генов, ответственных за дефицит. Но вторая Х–хромосома содержит гены–дублеры. Они обеспечивают нормальную функцию, находящуюся под их контролем.

    Если у этой женщины рождается девочка, то она будет здорова. Какая бы из Х–хромосом, полноценная или порочная, ей ни досталась в наследство от матери. Это происходит потому, что вторая ее Х–хромосома придет от отца, который не имеет данного дефекта. (Имей он его, он не дожил бы до отцовского возраста.)

    Когда у этой женщины рождается мальчик, у него 50 процентов шансов на то, чтобы получить порочную хромосому. А так как он мальчик, он имеет только одну Х–хромосому. Вторая хромосома этой пары у мужчин называется Y и не несет генов–дублеров. Вот почему порок, заложенный в Х–хромосоме, проявляется только у мальчиков, вернее, у половины всех рожденных такими женщинами сыновей.

    Все девочки здоровы, половина мальчиков — больны. Половина из всех рожденных девочек несет в себе порочную Х–хромосому, о которой они не знают до тех пор, пока у них не родился сын с пороком иммунитета.

    Не все иммунодефициты сцеплены с Х–хромосомой, или, как говорят, сцеплены с полом. Большинство наследуются по–другому. Но везде соблюдается одно правило: «порочные» гены носят рецессивный характер, то есть не проявляются, если ген–дублер в порядке. Читатель помнит, конечно, что все гены, заложенные в той или иной хромосоме, носительнице генов, имеют дублеров, которые есть во второй, парной хромосоме.

    У человека 23 пары хромосом. Двадцать две пары называются аутосомными, двадцать третья пара (XY) — половыми хромосомами. Не продублированы только гены Х–хромосомы у мужчин, так как парная к ней Y–хромосома гораздо короче, чем X. Рецессивный характер наследования выражается в том, что дефект проявляется, только когда оба гена «порочны». Дублера фактически нет. Получается так, что отец здоров и мать здорова, хотя в какой–то паре хромосом (скажем, в девятой) у каждого из них имеется «порочный» ген.

    Давайте обозначим нормальный ген, заведующий определенным звеном иммунной системы, большой буквой И, а «порочный» ген маленькой буквой и, отцовские хромосомы обозначим римскими цифрами, а материнские — арабскими. Тогда генетическую формулу по девятой хромосоме у отца можно изобразить IХИ–IХи. То же самое у матери 9И–9и. Оба несут рецессивные гены, но оба здоровы благодаря дублерам И.

    Рождающиеся у них дети получают в наследство половину хромосом от матери, половину хромосом от отца. По девятой хромосоме они могут быть IХИ–9И, IХИ–9и, IХи–9И, IХи–9и. Дети, получившие в наследство один из трех первых вариантов, будут здоровы. Унаследовавшие четвертый вариант (IХи–9и) получают пару «порочных» генов. Дублера нет. Проявляется врожденный дефицит.

    У которого из новорожденных он проявляется, неизвестно. Тут воля случая. Но при достаточной статистике, как всегда в генетике, царствуют точные цифры: 25 процентов детей, рожденных родителями, несущими рецессивный ген, проявляют действие этого гена. Работает закон Менделя: частота проявления рецессивного гена во втором поколении соответствует отношению 1 : 3.


    Какие дефекты иммунитета известны науке?

    — Какие же формы иммунодефицитов известны науке?

    — Чтобы ответить на этот вопрос, необходимо вспомнить устройство и работу иммунной системы.

    Иммунный ответ организма на любое чужеродное вторжение складывается из двух форм реагирования. Их обозначают как клеточный иммунный ответ и гуморальный иммунный ответ. Действующим фактором первой формы, ее эффектором является сенсибилизированный Т–лимфоцит. Действующими факторами гуморального ответа — антитела, то есть белки, относящиеся к классу иммуноглобулинов. Вырабатываются антитела плазматическими клетками, которые возникают из В–лимфоцитов.

    Вся иммунная армия организма, обеспечивающая специфические реакции на чужеродные антигены, состоит из двух систем лимфоидных клеток Т и В. Тимус и бурса Фабрициуса — это два центральных органа иммунитета.



    Сумка Фабрициуса


    Тимус, или вилочковая железа, располагается у млекопитающих за грудиной и характеризуется большой величиной у новорожденных и очень малой у взрослых организмов. Фактически в течение всей жизни размер и вес тимуса уменьшаются. На этом основании раньше считали, что тимус функционирует только в первые месяцы или годы жизни, а потом происходит атрофия.

    Оказалось, что это не так.

    Тимус всю жизнь функционирует, всю жизнь обучает лимфоциты иммунологической грамоте, или, как пишут в научных статьях, иммунной компетентности. Из него выходят иммунокомпетентные лимфоциты, которые и называются Т–лимфоцитами, что значит тимус — зависимые.

    Без тимуса эти клетки не возникают, организм не может в ответ на чужеродные антигены создавать сенсибилизированные лимфоциты.

    Иммунитет против многих вирусов не возникает, пересаженные ткани и органы не отторгаются, чужеродные клетки, в том числе и раковые, не разрушаются. Если удалить тимус, животное становится неполноценным в иммунологическом отношении, заболевает и гибнет, хотя выработка многих антител у него не страдает. Это объясняется тем, что главную роль в выработке антител играют В–лимфоциты.

    Бурса Фабрициуса (сумка Фабрициуса) — особый орган. Его нет у млекопитающих, но он есть у птиц. Располагается это скопление лимфоидной ткани около толстой кишки. Если у цыплят удалить сумку Фабрициуса хирургическим способом, то развивается иммунодефицит, отличающийся от того, который типичен для животных без тимуса. У таких цыплят страдает только образование антител. Они не вырабатываются, сколько бы раз ни проводилась иммунизация.

    А вот клеточные формы иммунного ответа развиваются. Иммунитет против вирусов возникает, чужеродные ткани отторгаются. Бурса Фабрициуса заведует только теми лимфоцитами, из которых возникают плазматические клетки, вырабатывающие антитела. Эти лимфоциты в отличие от Т–лимфоцитов и были названы В–лимфоцитами (от слова Bursa), то есть зависимые от бурсы.

    Правда, у млекопитающих и у человека до сих пор не найден этот орган или хотя бы его аналог. Предполагают, что функцию создания В–лимфоцитов выполняют пейровые бляшки — небольшие скопления лимфоидной ткани, разбросанные вдоль всего кишечника. Однако прямых доказательств пока нет. Название же В–система иммунитета и В–лимфоциты прижилось и распространяется не только на птиц, но и на всех других животных и на человека.

    В крови у людей циркулирует 30—40 миллиардов лимфоцитов. Из них 50—60 процентов являются Т–клетками, 20—30 процентов — В–клетками, а 10—20 процентов лимфоцитов не относятся ни к Т, ни к В, их назвали нулевыми клетками. Какова их миссия, пока неизвестно. Пропорция Т–и В–лимфоцитов в селезенке примерно такая же, как и в крови. А вот в лимфатических узлах Т–клеток больше — до 80 процентов.

    Конечно, Т–клетки в тимусе и В–клетки в сумке Фабрициуса птиц или ее аналоге у млекопитающих возникают не из ничего. У них есть свой предшественник, общий для всех клеток крови. Он называется кроветворной стволовой клеткой. От слова «ствол» по аналогии со стволом дерева, от которого происходят все ветки. Стволовые клетки генерируются в костном мозге и через кровоток приходят в указанные выше центральные лимфоидные органы, где и дают начало Т–и В–лимфоцитам. Общая схема становления Т–и В–систем, реализующих соответственно клеточный и гуморальный иммунитет, выглядит следующим образом. Ежедневно, ежечасно, ежеминутно костный мозг вырабатывает и выбрасывает в кровь стволовые клетки. Часть этих клеток кровоток заносит в тимус. Там они начинают размножаться, превращаясь при этом в Т–лимфоциты. Другую часть стволовых клеток кровь приносит в сумку Фабрициуса или в ее еще не открытый аналог. Там из них возникает рой В–лимфоцитов.

    Из этих двух центральных органов Т–и В–лимфоциты выплывают в кровь, поселяются в селезенке, в лимфатических узлах, проникают во все щели организма. Вездесущие, они ощупывают каждый уголок нашего тела и готовы в любой момент заняться уничтожением чужеродных пришельцев.

    Такова схема. Остается только отметить на ней те места, те этапы, которые могут быть дефектны по генетическим причинам. Выявляются основные формы первичных иммунодефицитов, врожденных уродств иммунной системы. Их четыре: генетический блок развития стволовых клеток, блок развития Т–клеток, блок развития В–клеток и сочетанные дефекты.

    Примером заболевания с изолированным дефектом В–системы служит разобранный выше, которым болеют только мальчики. Он называется инфантильной сцепленной с полом агаммаглобулинемией. Агаммаглобулинемия в переводе с латыни означает «полное отсутствие гаммаглобулинов», то есть антител, в крови.

    Пример чистого Т–дефицита — гипоплазия (недоразвитие) тимуса или синдром Ди Джоржи. Комбинированный дефект, когда страдают Т–и В–системы, характерен для заболевания, именуемого атаксией — телеангиэктазией или синдромом Луи Бар. Смешанные дефициты особенно тяжелы и особенно трудно поддаются лечению.


    Прежде чем лечить, нужно поставить диагноз.

    — Как же лечить иммунодефициты?

    — Для этого сначала необходимо точно выяснить, какое звено иммунной машины дефектно.

    — А как это узнать?

    — Для постановки точного диагноза разработаны специальные методы оценки иммунитета, изолированно по Т–и В–системам.

    Главная цель науки — практика. Иммунология, как и другие отрасли медицинской биологии, изучает врожденные уродства, не только чтобы понять работу иммунной системы и генетический контроль этой работы, но и чтобы лечить. Лечить иммунодефициты не только первичные, но и те, которые могут возникнуть во взрослом состоянии вследствие болезни или каких–либо иных причин.

    Но как лечить и что? По–видимому, в каждом конкретном случае лечение должно быть разное. Если поражена Т–система — одно, В–система — другое, стволовые клетки — третье. Следовательно, каждый раз, прежде чем лечить, необходимо дифференцированно оценить иммунологическую реактивность: есть ли и как работают Т–клетки, есть ли и как работают В–клетки. Для этого пришлось разработать и внедрить в клиническую практику диагностические пробы на Т–и В–клетки.



    Иммуноглобулин


    Для оценки функциональной активности В–системы необходимо оценить минимум три параметра. Во–первых, подсчитать количество циркулирующих в крови В–лимфоцитов. Второе — необходимо определить наличие иммуноглобулинов в крови, ибо антитела — это иммуноглобулины. Третье — это прямое определение антител против ряда антигенов после специально проводимой иммунизации или против постоянно попадающих в организм за счет нормальной микрофлоры.

    Если в крови совсем нет иммуноглобулинов, значит, организм не может их синтезировать и, следовательно, не может вырабатывать никаких антител. Если же уровень иммуноглобулинов в крови снижен, тогда необходимо определить, за счет какого класса этих белков произошло снижение. Все иммуноглобулины крови, то есть все циркулирующие антитела, делятся на пять классов: иммуноглобулины M(IgM), иммуноглобулины G(IgG), иммуноглобулины A(IgA), иммуноглобулины E(IgE), иммуноглобулины D(IgD). Основную массу и наибольшее значение в защите от инфекций имеют первые три класса иммуноглобулинов. Их нормальное количество в крови взрослого человека колеблется для IgM между 500 и 600 миллиграмм–процентами; для IgG — между 1000 и 2000; для IgA — между 100 и 200. Для 5—10–летнего ребенка эти цифры меньше и составляют соответственно 200—300, 500—1000, 50—100 миллиграмм–процентов. Определение концентрации этих трех иммуноглобулинов в крови больных совершенно необходимо для оценки функциональной активности В–системы иммунного ответа.

    Среди известных первичных иммунодефицитов есть такие, когда поражен синтез только одного класса антител, а именно IgA. Иммуноглобулины этого класса особенно важны, потому что они обладают одной замечательной особенностью. Они устойчивы к переваривающему действию многих ферментов, могут выходить из кровяного русла, проникать в слюну, в полость рта, в просвет бронхов и кишечника для встречи соответствующих микробов, которые еще только собираются проникнуть во внутреннюю среду организма, в его кровь, в его ткани. Таким образом, антитела, относящиеся к классу А иммуноглобулинов, являются передовым рубежом при встрече агрессоров. Если их нет, нет передовой линии фронта. Инфекционные осложнения слизистой рта, носа, бронхов, воспаления кишечника особенно часты и тяжелы.

    При других формах иммунодефицитов отсутствуют не только глобулины класса А, но и антитела, относящиеся к классу G. Это основная масса антител, особенно активных.

    После всякой искусственной иммунизации или после естественного заражения организм начинает выработку антител. Вначале вырабатываются антитела класса М. Это антитела первичного ответа, то есть самые первые, еще «громоздкие» и часто «неумелые». Только через несколько дней синтез антител переключается на выработку иммуноглобулинов класса G. Это уже антитела вторичного ответа. Их молекулярный вес не 900 тысяч, как у IgM, а всего лишь 160 тысяч, их много, и они высокоактивные.

    Но если дефект иммунной системы таков, что синтез IgG заблокирован, то на вооружении больного организма остаются только антитела первичного типа, относящиеся к классу М. Его устойчивость ко многим бактериям очень несовершенна.

    Наконец, при полной агаммаглобулинемии не вырабатываются никакие антитела.

    Читатель понимает, конечно, что поломка в организме далеко не всегда решается альтернативно: есть — нет. Возможны разные степени выраженности дефекта, разные по количественным показателям гипогаммаглобулинемии. Именно поэтому, помимо определения иммуноглобулинов разных классов, необходимо прямо узнавать способность вырабатывать не иммуноглобулины вообще, а конкретные антитела.

    Для этого пользуются определением в крови титров антител против широко распространенных микробов, например кишечной палочки и стафилококков, или специально иммунизируют больного. Однако живые вакцины нельзя использовать, так как в иммунологически дефектном организме они могут вызвать инфекционный процесс. Эксперты Всемирной организации здравоохранения рекомендуют пользоваться коклюшно–дифтерийно-столбнячной вакциной (КДС), убитой противополиомиелитной вакциной и некоторыми другими.

    Для оценки функциональной активности Т–системы иммунитета применяются другие методы. Но опять все начинается с подсчета циркулирующих в крови Т–лимфоцитов.

    Выше говорилось, что Т–лимфоциты после антигенной стимуляции размножаются и превращаются в сенсибилизированные лимфоциты, которые устремляются к месту расположения антигена. Обе эти способности можно увидеть и измерить.

    Первый процесс называется бласттрансформацией Т–лимфоцитов. Она воспроизводится в пробирке под влиянием особого стимулятора — фитогемагглютинина (ФГА). Этот препарат полисахаридной природы выделяют из фасоли.

    У больного из вены берут кровь, отделяют лимфоциты, помещают их во флакон с питательным раствором и фитогемагглютинином, культивируют трое суток, собирают клетки и учитывают трансформацию лимфоцитов в бластные, то есть молодые размножающиеся клетки.

    Учет этот может быть осуществлен двояко. В первом варианте из клеточной суспензии готовят мазки, окрашивают и под микроскопом подсчитывают процент трансформированных лимфоцитов. Величины в 60—80 процентов считаются нормальными. Во втором, более объективном варианте на радиометрическом счетчике определяют интенсивность включения в клетки меченного радиоактивным элементом тимидина, который предварительно добавляют в культуру лимфоцитов. Чем выше уровень бласттрансформации, тем интенсивнее включение, тем, следовательно, активнее Т–система клеток.

    Оценка способности сенсибилизированных лимфоцитов приходить к месту расположения антигена, вызывая там специфическую иммунную реакцию, так называемую реакцию гиперчувствительности замедленного типа, производится различными кожными пробами. Для этого пользуются общеизвестным туберкулином. Тем самым, который наносят детям на предплечье, чтобы определить, не болен ли ребенок туберкулезом. Помните, наверное, школьные годы, когда всем ставили туберкулиновые пробы. Однако наиболее информативной считается кожная проба с редким химическим агентом динитрохлорбензолом. Исследуемому на кожу наносят это вещество, а через 14—21 день делают это повторно. Если кожные реакции не развиваются, значит, функция тимуса, Т–лимфоцитов и всей Т–системы иммунного ответа дефектна.


    Иммунная инженерия.

    — Принцип ясен: если дефектны гены, обеспечивающие развитие Т–лимфоцитов, необходимо восстанавливать работу тимуса; если дефект затрагивает В–систему, следует восстанавливать работу костного мозга. Но как это сделать? Ведь наука еще не умеет «чинить» дефектные гены.

    — Да, генная инженерия еще не настолько продвинулась вперед, чтобы реализовать такую возможность на практике. Но существует иммунная инженерия.

    — Иммунная инженерия?

    В мае 1975 года в одном из выпусков «Недели» было рассказано о том, что в известном всему миру американском космическом центре, в городе Хьюстоне живет неизвестный миру космонавт. Ему всего четыре года от роду. Из этих четырех лет он только пять секунд дышал воздухом, которым дышат все жители Земли. Газета писала, что этот мальчик по имени Давид не знает, как пахнут цветы, что такое поцелуй матери или объятие отца. Он никогда не гулял, взявшись за руки, с другими детьми. Он вообще никогда не касался кожи другого человека.



    Футбол


    Он живет в герметической пластиковой камере. Ни один микроб не должен проникнуть в камеру. Если ее целостность нарушить, микробы проникнут, он умрет. В камеру подается стерильный воздух, стерильная вода, стерильная пища, стерильные игрушки, носовые платки, одежда и т.д. Все это называется «содержание в безмикробных условиях». У Давида тяжелый комбинированный иммунодефицит. Он беззащитен перед микробами. Он живет в этом колпаке, а врачи ждут, не заработает ли его иммунная система. Может быть, она отстала в развитии и вот–вот догонит. А если нет, придется прибегнуть к иммунной инженерии.

    Конечно, можно поддерживать жизнь родившегося с иммунодефицитом ребенка с помощью антибиотиков, чтобы предотвратить инфекционные осложнения. До эры антибиотиков иммунодефицитных детей просто не могли наблюдать. Они погибали в самом раннем возрасте. Следовательно, антибиотикотерапия и другие способы лечения инфекций есть метод лечения таких больных. Но практически это труднодостижимо.

    Профилактика инфекционных осложнений возможна и путем активной иммунизации больных против наиболее частых инфекций. Она хоть и не столь эффективна, как у нормальных организмов, но все–таки создает в ряде случаев некоторую степень невосприимчивости. Но все эти приемы лишь продляют жизнь ребенка. Они не являются истинно лечебными мероприятиями, так как не излечивают основной дефект, не устраняют первопричину, скажем, поражение В–системы или Т–системы иммунитета.

    При дефиците В–системы, выражающемся в снижении или отсутствии способности синтезировать иммуноглобулины, истинно лечебные мероприятия складываются из замещения недостающих иммуноглобулинов или замещения нехватки В–клеток. Первый путь связан с постоянным введением больным иммуноглобулинов (гамма–глобулинов), выделенных из крови здоровых людей. Эффективная доза составляет 25—50 миллиграммов чистых иммуноглобулинов на килограмм веса больного в неделю.

    Такая терапия весьма эффективна при неполном дефекте В–системы, когда выработка иммуноглобулинов снижена, но не блокирована совсем. Постоянное введение гамма–глобулинов обеспечивает жизнь и работоспособность больных, которые благодаря этому лечению доживают до зрелого возраста.

    Восстановление недостающих в организме В–клеток возможно только путем их трансплантации от совместимых в тканевом отношении доноров. Поскольку основным источником и вместилищем В–клеток в человеческом организме является костный мозг, пересадка костного мозга означает пересадку В–клеток. Замещение недостающих иммуноглобулинов или В–клеток новыми — это уже иммунная инженерия.

    Понятие «иммунная инженерия» ввел в обиход академик Юрий Михайлович Лопухин, чтобы подчеркнуть: лечение дефектов иммунной системы — это не просто введение иммуноглобулинов или костного мозга или пересадка тимуса. При каждом иммунодефиците, в каждом конкретном случае требуется особое — инженерное — решение.

    Иммунная инженерия на сегодняшний день — единственный способ истинного устранения причины иммунодефицитов, так как ее целью является замена дефектных частей иммунной системы нормальными. Это не значит, конечно, что проблема иммунодефицитов уже полностью решена благодаря внедрению в практику трансплантации клеток костного мозга, лимфатических узлов, селезенки или тимуса.

    Это было бы решением проблемы, если бы сама пересадка клеток и тканей не таила в себе еще не решенных проблем несовместимости тканей. Однако для уменьшения явлений несовместимости есть эффективные приемы. Во–первых, тщательный подбор донора и реципиента по антигенам тканевой совместимости — типирование доноров и реципиентов. Во–вторых, применение иммунодепрессивных препаратов, уменьшающих реакции отторжения пересаженных органов, тканей или клеток. При лечении иммунодефицитов методами трансплантации также необходимо типирование, а в ряде случаев и применение иммунодепрессантов.

    Компенсация дефектной Т–системы иммунитета возможна только путем пересадки Т–лимфоцитов или тимуса. Гуморальные факторы, обеспечивающие трансформацию кроветворных стволовых клеток в Т–клетки, еще не выделены, поэтому компенсация дефектной Т–системы сложнее, чем компенсация работы В–клеток. Выше говорилось, что последнее достижимо путем систематического введения иммуноглобулинов. При Т–дефектах годится только трансплантация. Этот путь наиболее перспективен, так как с его помощью можно восстановить и В–систему.

    Всего применяется восемь типов пересадок, различных при разных дефектах иммунитета. Семью способами пользовались в различных клиниках мира. Восьмой способ разработан Юрием Ивановичем Морозовым и Юрием Михайловичем Лопухиным во Втором московском медицинском институте. Ниже дается краткая характеристика указанных типов пересадок.

    1. Пересадка клеток костного мозга, селезенки, лимфатических узлов или лимфоцитов крови от взрослых доноров.

    2. Пересадка тимуса от несовместимого эмбриона или взрослого донора.

    3. Комбинированная пересадка печени и тимуса от одного и того же несовместимого донора–эмбриона. (Печень эмбриона — кроветворный орган, поставщик кроветворных стволовых клеток.)

    4. Пересадка цельного костного мозга от донора, совместимого с реципиентом по антигенам тканевой совместимости.

    5. Пересадка стволовых клеток, выделенных из костного мозга иммунологически зрелого (взрослого) совместимого донора. Такая пересадка может сочетаться с трансплантацией тимуса.

    6. Пересадка изолированных стволовых клеток или цельного костного мозга от родителей с предварительным введением антител против антигенов тканевой совместимости больного. Последнее делают, чтобы уменьшить явление несовместимости.

    7. Пересадка фракции стволовых клеток, выделенных из костного мозга родителя, в сочетании с иммунодепрессивной терапией.

    8. Восьмой способ состоит в том, что пересаживаются одновременно два органа в едином блоке — тимус и грудина, взятые от новорожденного (мертворожденного) донора.

    Принципиальный смысл такой пересадки заключен не только в анатомическом удобстве операции, хотя это тоже немаловажный момент. Действительно, тимус расположен непосредственно за грудиной, которая является одним из главных вместилищ костного мозга. Их кровоснабжение тесно связано. Поэтому при соединении артериального и венозного русла такого единого блока с какими–либо артерией и веной реципиента устанавливается отличное кровообращение обоих органов.

    Главный «иммунологический смысл» пересадки такого блока состоит в том, что пересаживаются целиком все компоненты Т–системы иммунитета. Нормальный костный мозг — поставщик нормальных стволовых клеток, которые через кровоток придут в свой собственный полноценный (донорский) тимус и превратятся в Т–лимфоциты. Кроме того, костный мозг является у человека резервуаром В–клеток. Иначе говоря, такая пересадка нормализует и В–систему иммунитета. Вот почему трансплантация блока тимус — грудина — один из самых эффективных способов лечения комбинированных иммунодефицитов, когда неполноценны и Т–и В–системы клеток. Самый эффективный способ иммунной инженерии.

    Здесь рассказано о врожденных дефектах. Но ведь дефект в работе того или иного органа, той или иной системы может возникнуть и по другой причине, например в старости.

    Что происходит на старости лет?

    — Действительно, что происходит на старости лет? Все системы изнашиваются, сердце начинает плохо работать, слабеют мышцы, зрение, память. А как иммунная система? Как этот страж, это «недреманное око», следящее за тем, чтобы не пробрался в организм чужак или не завелся генетический изменник?

    — Иммунная система тоже ослабевает. Особенно тимусзависимая часть ее, которая как раз и осуществляет «полицейскую функцию», функцию надзора за лояльностью граждан.

    — Не потому ли возникает рак в пожилом возрасте?

    Двадцатого августа 1971 года в Вашингтоне открылся Первый международный конгресс иммунологов. Этот день стал, таким образом, днем провозглашения независимости иммунологии. Иммунология не только по существу, но и формально приобрела самостоятельность. До этого дня она бывала представлена лишь в виде отдельных заседаний или секций на микробиологических, физиологических или генетических конгрессах. Теперь возникло самостоятельное международное общество, объединяющее иммунологов всего мира, собрался первый иммунологический конгресс, на который съехались около трех тысяч исследователей из всех стран.

    Работа конгресса проходила в одном из самых больших отелей на окраине Вашингтона — в Шератон Парк отеле. Здесь делегаты жили, в его просторных залах проходили все заседания. Организованы они были таким образом, что делегаты могли послушать и самые современные доклады из уст самых известных ученых, и поспорить в непринужденной обстановке.



    Ситуация


    Послушать крупнейших иммунологов можно было ежедневно в первую половину дня, когда проходили пленарные сессии. Поспорить тоже ежедневно, но во вторую половину дня на так называемых уоркшопах, то есть рабочих совещаниях. Сейчас сочетание сессий и уоркшопов стало самой популярной формой проведения научных конгрессов.

    Все доклады на сессиях заказываются оргкомитетом заранее самым продуктивно работающим ученым. На сессиях не принято задавать вопросы, спорить и вообще выступать в прениях. Там только слушают умных людей. На уоркшопах все наоборот: нет никаких докладов, только задают вопросы, выступают в прениях и спорят. Не по докладу, произнесенному на сессии, а по той или иной проблеме вообще.

    Ну конечно, на каждом уоркшопе есть его организатор, его дизайнер, назначенный оргкомитетом из числа наиболее разбирающихся в данной области людей. Например, организатором уоркшопа по врожденным дефектам иммунитета стал Роберт Гуд, которому уже были посвящены страницы этой книги. Организатором уоркшопа по иммунологии старения, его председателем был профессор Рой Валфорд.

    Собрались заинтересованные люди. Председатель подошел к доске и написал на ней два вопроса:

    1. Что происходит с иммунной системой при старении организма?

    2. Не является ли старение следствием нарушения работы иммунной системы?

    После этого он сел за председательский стол и предложил желающим высказываться.

    По первому вопросу участники уоркшопа оказались более или менее единодушны. Иммунная система, как и все другие системы организма, в юности набирает силу, от 16 до 30—40 лет работает на своем максимуме, а потом с каждым десятилетием жизни начинает функционировать хуже и хуже.

    Таяши Мэйкинодан из Оук–Риджа предложил очень удобный критерий, который все тут же приняли на вооружение. Критерий этот он назвал относительным иммунологическим потенциалом (ОИП). Под ОИП он предложил понимать ту иммунологическую работу, которую может выполнить один миллион лимфоидных клеток, взятых от организмов разного возраста. Так вот, если выработку антител, на которую способен один миллион селезеночных клеток организма самого цветущего юношеского возраста, принять за 100 процентов, то ОИП новорожденного будет равен всего 8, а у старика 20—30. Правда, у новорожденного такой низкий ОИП через несколько недель возрастает до высоких цифр, у старика не нормализуется никогда. Он только падает.

    Второй написанный на доске вопрос был вопрос о причинах и следствиях. Иммунитет слабеет потому, что наступает старость, или старость наступает от того, что слабеет защита от внешних и внутренних врагов. Явных победителей не оказалось, хотя спорили долго. Аргументы были слишком замысловатые.

    Сам Валфорд выдвинул такую гипотезу.

    Среди клеток иммунной системы, среди лимфоцитов, за долгие годы жизни накапливаются ненормальные варианты. То ли что–то вредное подействовало раз, и другой, и третий… То ли при клеточном размножении неправильно разделился ядерный материал и уродился неудачный лимфоцит… То ли накопились мутации — изменения генов лимфоидных клеток… Кто знает? Важно, что появились ненормальные лимфоциты, осуществляющие функцию надзора. Что–то вроде ненормальных полицейских.

    И вот вместо того, чтобы исправно нести свою службу, вылавливать врагов, общества или изменников (ненормальные клетки тела), эти «сумасшедшие полицейские» набрасываются на «лояльных граждан» — тружеников тела, уничтожают их, мешают им выполнять свои функции, вырабатывают против них антитела и т. д. В результате к старости начинает плохо работать система кроветворения, сердечная мышца повреждается, кожа дряхлеет и т. д. Выражаясь медицинским языком, развиваются аутоиммунные реакции, агрессия ненормальной иммунной системы против нормальных клеток тела.

    Аутоиммунные болезни действительно существуют. К ним относятся ревматизм, волчанка, некоторые формы малокровия. Но об этом впереди.

    Идея Валфорда не является общепризнанной, но имеет немало сторонников. На конгрессе 1971 года к общему мнению не пришли. Может быть, не придут к нему и в 1981 году. Но на иммунологическом конгрессе еще не было многих фактических данных о работе иммунитета в старости. Уже знали о существовании Т–и В–систем иммунитета. Уже знали, что именно Т–лимфоциты осуществляют «полицейские функции» надзора. Но как они изменяются в старости и сколько их циркулирует в крови стариков, еще не знали.

    Эти сведения появились через год и обсуждались на другом международном конгрессе в Киеве. В июле 1972 года здесь собрался девятый Всемирный конгресс геронтологов — специалистов, изучающих науку о старении — геронтологию. Специальный симпозиум был посвящен иммунологии старения. Интересные доклады сделали Владимир Козлов из Новосибирска, Рахим Хаитов из Самарканда, Виктор Манько из Москвы. Приехал и наш знакомый Таяши Мэйкинодан. Только теперь он приехал не из Оук–Риджа, а из Балтимора. Там, неподалеку от Вашингтона, он возглавил вновь созданный Геронтологический центр США. Но иммунолог остался иммунологом. Главная научная проблема центра сформулирована как иммунология старения.

    На этом конгрессе данные о разных клеточных системах иммунитета разложились по полочкам: о стволовых клетках, из которых возникают Т–и В–лимфоциты, о самих Т–и В–лимфоцитах, об их взаимодействии, активности и так далее.

    Козлов показал, что количество кроветворных стволовых клеток в стареющем организме неуклонно уменьшается. А ведь именно эти клетки выплывают из костного мозга и, приплывая в тимус, служат «посевным материалом», из которого вырастает армия Т–лимфоцитов.

    Хаитов доказал, что с каждым годом жизни действительно меньше стволовых клеток выплывает и меньше приплывает. Абсолютное число Т–лимфоцитов с годами уменьшается в несколько раз. Именно Т–лимфоцитов! Клеток, которые осуществляют иммунологический надзор. Это впоследствии было показано и на мышах и на людях.

    Константин Лебедев, например, просчитал кровь 400 человек самых разных возрастов — новорожденных, 5–летних, 16–летних, 40–летних, 70–и 80–летних. Абсолютное число Т–лимфоцитов в единице объема крови в течение всей жизни только уменьшается. Количество В–лимфоцитов примерно одно и то же, а Т — уменьшается и уменьшается.

    Виктор Манько совместно с Лией Сеславиной продемонстрировал снижение работоспособности Т–лимфоцитов в старости. Они уже не столь активны в совместной работе с В–лимфоцитами. Их не хватает, чтобы с той же силой убивать генетически чужеродные клетки.

    Таяши Мэйкинодан сформулировал главную беду иммунной системы в стареющем организме. В своем докладе, не в популярной лекции, а в сугубо научном докладе он так и сказал: «…с годами в организме страдает полицейская функция иммунной системы». Т–лимфоциты плохо несут службу, они становятся близорукими. Явных поджигателей, чужестранцев, разговаривающих не на их языке, они видят, а внутренних саботажников и изменников не замечают.

    Вот почему защита организма против микробов в старости не столь страдает. Страдает защита от рака, то есть от порочных злокачественных клеток, которые возникли в самом организме. Развитие разных форм рака в пожилом возрасте действительно связано с дефектностью иммунной системы. Наоборот, мы все живем благополучно потому, что нормальная иммунная система исправно несет свою функцию по противораковой защите.

    Стареющий организм — это организм парадоксов. Особенно с точки зрения иммунолога. Вот несколько примеров.

    Иммунная реактивность старого организма достаточно сильна, чтобы противостоять вторжению возбудителей самых различных заразных болезней, будь то холера, чума, дизентерия или грипп. Действительно, заразные заболевания отнюдь не ведущая причина смерти в старости. Однако иммунная система явно слаба, чтобы проводить нормальный контроль за генетическим постоянством клеток тела и убирать изменившиеся формы, включая раковые клетки.

    Иммунная реактивность старого организма достаточно сильна, чтобы обеспечить ненужную и вредную активность «сумасшедших» лимфоцитов, о которых рассказано двумя страницами раньше. В то же время она настолько слаба, что отказывает при малейших перегрузках. Случится у старого человека аппендицит или что–то еще, требующее хирургического вмешательства, и все настороже: и родные, и лечащий врач, и хирург. Не потерять бы больного из–за присоединившегося после операции воспаления легких, нагноения раны или от простуды.

    Перечисление парадоксов, иллюстрирующих то силу, то слабость тех или иных сторон работы иммунной системы при старении, можно было бы продолжить. Все бы они демонстрировали правило: разные звенья сложной машины иммунитета выходят из строя по–разному и в разное время.

    Что же делать? Можно ли осуществлять коррекцию? Какие на этот счет существуют фантазии и реальные достижения?

    Одна из самых увлекательных фантазий — заготовка собственного костного мозга на черный день. Так же как деньги в сберегательной кассе — пригодятся на старости лет. Эта фантазия базируется на ныне установленной закономерности: по мере старения неукоснительно снижается количество кроветворных стволовых клеток, вырабатываемых костным мозгом. В молодом костном мозге их много, и он, не жалея, поставляет их в кровоток.

    Так почему бы у юноши или девушки не взять костный мозг и не положить в замороженном состоянии в специальный тканевый банк, как в сберкассу? Пройдет 50—70 лет, и понадобятся сохраненные стволовые клетки. А может, случиться нужда и раньше. Может, начнется болезнь с расстройством кроветворения или несчастный случай, вроде отравления каким–либо ядом, разрушающим костный мозг.

    Никаких технических препятствий для реализации этой фантазии нет. Консервация костного мозга замораживанием — полностью отработанная процедура. Проверено, что жизнеспособность клеток сохраняется десятки лет. Главная задача — не перепутать «банковский вклад» юноши Н. с таким же вкладом юноши К. Если перепутаешь, то пересадка будет не только бесполезной, но и вредной из–за всех осложнений, связанных с несовместимостью тканей.

    Ведутся интенсивные экспериментальные работы по поиску средств, которые усиливают миграцию стволовых клеток у старых животных и содействуют процессам взаимодействия Т–и В–лимфоцитов. Это удается в экспериментах. Рахим Хаитов, например, добился успеха с помощью поли–4–винилпиридина. Это синтетический поликатион высокого молекулярного веса. Миграции стволовых клеток стимулируют и полианионы и препараты высокомолекулярной дезоксирибонуклеиновой кислоты, а также синтетические полинуклеотиды, имитирующие естественные нуклеиновые кислоты.

    Конечно, от эксперимента к клинике путь не всегда быстр. Но дело начато!










     


    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх