ПОИСК ПЛАНЕТ — ОБИТАЛИЩА РАЗУМНОЙ ЖИЗНИ

Поиск планет труден тем, что современные инструменты, которыми располагают как оптическая, так и радиоастрономия, неспособны их разглядеть из-за их малых угловых размеров. Практически сегодня судить о том, имеются ли у данной звезды вращающиеся вокруг нее планеты, можно только по некоторым косвенным признакам. Что это за признаки? Один из таких признаков можно проиллюстрировать на примере нашей Солнечной системы. На Солнце имеются солнечные пятна. Но их количество на видимом диске Солнца, а также местоположение меняются определенным образом. В течение нескольких лет число пятен увеличивается, затем, по достижении максимума, постепенно также в течение нескольких лет уменьшается до своего минимального значения. С активностью образования пятен на Солнце связывают солнечную активность. Она проявляется в выбросе из Солнца потоков заряженных частиц, состоящих главным образом из протонов и электронов. Чем больше интенсивность этих потоков, тем больше солнечная активность. Мы не будем здесь в деталях рассматривать все возможные причины циклических изменений в величине солнечной активности. Некоторые из этих причин находятся, несомненно, внутри самого Солнца. Но часть причин, возможно самая основная, находится вне его. Эти причины связаны с движением планет вокруг своей звезды — Солнца, а точнее, с особенностями движения всей единой системы, включающей и звезду, и обращающиеся вокруг нее планеты. Если бы масса всех планет была равномерно распределена вокруг Солнца, то центр тяжести всей Солнечной планетной системы в точности совпадал бы с центром тяжести Солнца. Но поскольку это не так и планеты в результате своего обращения с разными периодами могут сгруппироваться в каком-либо одном или нескольких основных направлениях, то центр массы Солнца не совпадает больше с центром массы всей системы. Изменения в характеристиках движения отдельных планет и Солнца не могут происходить как угодно, а только так, чтобы сохранялся постоянным момент количества движения всей системы как единого целого. Поэтому и происходит сдвиг центра Солнца относительно центра массы всей системы, то есть барицентра. Эти изменения весьма значительные. Они составляют почти 3,5 солнечных радиуса, то есть расстояния только в 16 раз меньше расстояния от Земли до Солнца. Такие перемещения центра массы Солнца относительно барицентра Солнечной системы могут происходить за период, равный примерно 17 годам. Это вычисленное значение смещения. К сожалению, до сих пор не проводились измерения величины этого смещения у Солнца и других звезд. Специалисты считают, что, несмотря на трудности таких измерений, они возможны в принципе и для проблемы поиска внеземных цивилизаций актуальны. Очевидна их ценность и для окончательного решения вопроса о физической природе солнечной активности.

Можно считать установленным, что динамика планетной системы связана с солнечной циклической активностью. Отсюда следует важный для нашей проблемы вывод: изменение звездной активности может свидетельствовать о наличии вокруг этой звезды планет. В связи с этим на Таллинском симпозиуме обсуждались результаты О. Уилксона, который экспериментально установил, что поток излучения от звезды HD32147 (карлик спектрального типа К5) изменяется во времени. Было получено в этих наблюдениях, что активность этой звезды изменяется с периодом больше 7 лет: в течение примерно двух лет активность увеличивается от минимальной до максимальной, а затем в течение 4–5 лет уменьшается до прежней минимальной величины. О. Уилксон обследовал на активность и другие звезды, как более горячие, так и более холодные. Но оказалось, что ни те, ни другие циклических изменений излу-чательной активность не проявили. Уилксон опубликовал результаты наблюдений, которые были начаты в 1967 году и продолжались по крайней мере до 1984 года. Он исследовал 91 звезду различных спектральных классов.

Эта проблема требует дальнейшей разработки. Во-первых, надо более полно исследовать влияние планет на солнечную активность, чтобы получить некоторые закономерности, по возможности общие для определенного класса звезд. Во-вторых, надо экспериментально исследовать активность звезд и выделить те звезды, которые могли бы быть зачислены в кандидаты на обладание планетами. После этого уже можно будет обследовать эти планеты на предмет наличия на них цивилизаций. Важным шагом явилась разработка экспериментального (динамического) метода, позволяющего определять собственное движение звезд в пространстве с целью определения смещения центра звезды относительно барицентра системы, о котором говорилось выше. Метод позволяет измерять смещения планет как в направлении к нам, так и от нас (то есть по лучу зрения), а также в перпендикулярной лучу зрения плоскости. Метод позволяет определить смещение звезды, точнее, амплитуду ее колебания вокруг барицентра с угловой точностью 0,01 секунды. Если проводить единичные измерения без длительного накопления сигналов, то эта точность может быть повышена, возможно, даже на порядок. Чтобы выявить колебание звезды относительно барицентра всей системы (звезда плюс планеты), разработан метод, позволяющий измерять малые изменения скорости звезды по лучу зрения порядка 10 м/с. В основу его положен эффект Доплера. Но для достижения большей точности предложена оригинальная калибровка длин волн звездного излучения. Планы по практической реализации этого метода очень большие. По проекту «Орион» (США) планировалось создать специальный наземный звездный интерферометр с базой 55 метров, работающий в оптическом диапазоне, точность измерения на котором должна составить 0,0001 секунды, на несколько порядков повысить точность других инструментов, используемых в динамическом методе, а также создать астрономический телескоп на орбите, который должен позволить измерять угловые расстояния с точностью до 0,000001 секунды. Если эти планы удастся реализовать, то значительно возрастут возможности исследования планетных систем в Галактике и цивилизаций, которые на них обитают. Как же обстоит дело в принципе с прямым поиском планет в нашей Галактике с помощью уже существующих оптических и радиотеле скопов?

Теоретические оценки существования планетных систем у звезд показали, что примерно каждая четвертая звезда в нашей Галактике должна обладать планетной системой. Это значит, что до расстояния от нас в 10 парсек должно существовать примерно 130 планетных систем (всего звезд в этом шаровом объеме примерно 530). Искать планеты можно различными методами. Методы непосредственного обнаружения предполагают регистрацию потока излучения от самой планеты, то есть излучения, которое исходит от звезды, но регистрируется после отражения от планеты. Ясно, что этому измерению будет мешать излучение, приходящее непосредственно от звезды. Оценки потоков этих излучений показали, что выделить излучение от планеты на фоне излучения от самой звезды фотографическим способом можно только в том случае, если планета имеет очень большую массу или, как принято у астрономов говорить, если это планета-гигант. Если же проводить измерение излучения планеты в инфракрасном диапазоне (это излучение собственно планеты) и при этом воспользоваться ситуацией, когда излучение звезды экранировано, то можно получить превышение полезного сигнала над уровнем шумов в 10 раз. При такой ситуации сигнал уверенно регистрируется. Но даже если излучение звезды не будет экранировано, метод измерения излучения звезды в инфракрасном диапазоне на много порядков эффективнее фотографического метода. Практически 4-метровый телескоп, работающий в инфракрасном диапазоне, должен бы зарегистрировать излучение планеты.

Однако здесь имеется очень большое «но». Оно заключается в том, что земная атмосфера практически не позволяет проводить такие измерения в инфракрасном диапазоне с необходимой точностью. Поскольку в атмосфере воздух находится в непрерывном вихревом (турбулентном) движении, то изображение, получаемое лучами, проходящими через такую турбулентную атмосферу, будет непрерывно «дрожать». То есть оно получится нерезким. Размытые изображения, мерцания, вызванные турбулентной атмосферой, ее тепловой шум оказывают влияние на наблюдения в инфракрасном диапазоне. Поэтому угловое разрешение, необходимое для определения местонахождения планет, не достигается. В таких измерениях реально можно получить угловое разрешение не более 1–2 секунд. Это очень малое разрешение! Для сравнения скажем, что сейчас в астрономии идет речь уже не об одной угловой секунде, а о ее тысячных долях. Выход из данного положения только один: надо измерения проводить за пределами земной атмосферы, то есть телескоп надо поднимать в космос. При этом также имеются некоторые сложности, в описание деталей которых мы входить не будем. Тем более что специалисты нашли способ от них избавиться. Имеется еще одна возможность вполне надежного определения местонахождения планет в том случае, если проводить измерения за пределами земной атмосферы. Для этого надо использовать не один инфракрасный телескоп, а сразу два, соединенных в общую схему. Включенные соответствующим образом два телескопа составляют вместе интерфейсный космический интерферометр, конструкция которого предложена Брейсу-эллом, имеет базу, равную примерно 10 метрам. База интерферометра отстраивается таким образом, чтобы минимум (ноль) в интерференционной картине находился на звезде, а максимум совпадал с планетой. Далее необходимо ось вращения интерферометра направить на звезду. В этом случае сигнал от планеты не может быть постоянным, он будет изменяться с изменением частоты вращения интерферометра. Специалисты говорят, что он будет промодулирован частотой вращения интерферометра. Скорость вращения интерферометра задаем мы сами, поэтому она нам известна с достаточно высокой точностью. Следовательно, мы заранее знаем, какой должна быть модуляция сигнала от звезды.

Именно этот факт позволяет надежно обнаружить изменяющийся сигнал от планеты, поскольку он регистрируется на фоне неизменных сигналов от неподвижных звезд.

Возможность таких измерений сигналов от планет очень обнадеживает. Однако надо иметь в виду, что интерферометр должен быть направлен с высокой точностью именно так, как это было описано выше. Наводка максимума интерференционной картины строго на планету не может быть осуществлена заранее, поскольку заранее не известно положение планеты. Поэтому выбор необходимой базы интерферометра, которая удовлетворяла бы указанным выше условиям эксперимента, является делом непростым. Наводка должна проводиться в космосе после того, как будет установлено направление на планету. Для регистрации слабых радиосигналов чаще всего используют метод накопления. Чем слабее сигналы, тем более продолжительным должно быть время. Естественно, что в течение всего этого времени интерферометр должен быть стабилизирован с очень высокой точностью. Это технически осуществить тоже непросто.

Мы привели основные моменты, связанные с измерениями за пределами земной атмосферы, в том числе и для того, чтобы у читателя не сложилось впечатление, будто вынос аппаратуры в космос решает все проблемы и при этом экспериментаторы получают одни плюсы. В большинстве случаев к аппаратуре, которая предназначена для работы в космосе, предъявляются большие требования, чем к «земной». Это касается и надежности ее работы, и малой энергоемкости, и способности работать в автоматическом режиме (без человека), и еще многого-многого другого. Но зато она позволяет получить качественно новую информацию. Так и проявляется научно-технический прогресс в этой области исследований.

Можно попытаться установить наличие планеты вблизи звезды, измеряя светимость звезды в то время, когда по ее видимому диску проходит планета. Ясно, что для этого надо находиться в той же плоскости, в которой планета обращается вокруг звезды (в плоскости эклиптики). Тогда мы будем «видеть», как планета проходит вдоль средней линии звезды — ее экватора. Это идеальные условия для проведения таких измерений. Если мы находимся на некотором небольшом удалении от плоскости эклиптики, когда «видим» планету проходящей севернее или южнее экватора звезды, то в таких условиях измерения также возможны, хотя время покрытия диска звезды планетой будет меньше. Если же планета для нас проектируется недалеко от полюса звезды, то время покрытия слишком мало. Такие эксперименты специалисты назвали наблюдениями планет «с ребра», поскольку при этом наблюдения ведутся не сверху и не снизу по отношению к плоскости, а с ребра. Одно из ограничений этого метода состоит в том, что у нас нет возможности поставить те планеты, которые подлежат наблюдению, на ребро. Мы должны довольствоваться тем их положением, какое есть. Поэтому число планет, которое можно исследовать таким образом, невелико: из 100–200 планетных систем всего одна оказывается в таком положении, которое позволяет вести наблюдение с ребра. Другими словами, вероятность того, что при одноразовом наблюдении мы попадаем именно на такую планетную систему, ничтожно мала. Но если наблюдения вести непрерывно в течение примерно трех лет, то эта вероятность приближается к единице. Но при этом само собой понимается, что наблюдения проводятся на соответствующей аппаратуре, обладающей достаточным угловым разрешением, точностью измерений, надежностью и т. д.

Что же надо измерять при покрытии планетой звезды? Надо измерять те параметры звезды, которые могут измениться в результате такого покрытия. Это блеск звезды и показатель ее цвета. Уменьшение блеска звезды тем больше, чем большая часть ее видимого диска закрыта планетой. В настоящее время разработана методика таких измерений и обработки данных измерений. Одновременное измерение показателя цвета звезды также дает дополнительную информацию о прохождении планеты по видимому диску звезды. Дело в том, что цвет звезд различен в разных частях видимого диска. Это различие выражается в том, что чем ближе к краю видимого диска звезды, тем меньше излучение звезды. Этот эффект получил название потемнения блеска звезды к краю. Но оказывается, что это потемнение для лучей разных цветов происходит с разной скоростью. Так, интенсивность красных лучей по мере приближения к краю диска (лимбу) уменьшается быстрее, чем интенсивность синих лучей. Поэтому, когда планета находится на диске звезды вблизи ее лимба, цвет звезды изменится в синюю сторону (красного стало меньше), а когда планета продвигается к центру — в красную сторону. Было оценено, что если планета проходит по диску звезды вдоль ее экватора, показатель цвета может изменяться от лимба к центру звезды на 0,7 %. Эти изменения, если они будут измерены, благодаря их симметричной форме могут быть интерпретированы как результат прохождения планеты по видимому диску звезды. Проводится также поиск планет, которые находятся на самых разных стадиях своей эволюции. Их называют протопланетными образованиями (облаками). Поиск ведется главным образом в инфракрасном диапазоне, хотя эти облака можно наблюдать и в радиодиапазоне. Протопланетные облака, как правило, ищут там, где происходит образование звезд. Что конкретно можно сказать о результатах поиска планет? Исследовались системы, состоящие из двух объектов. Одним объектом является видимая звезда, а другим объектом — невидимая. Невидимый объект оказывает влияние на движение видимой звезды и тем самым обнаруживает себя. Разными исследователями обследовалось определенное количество таких двойных систем. Оказалось, что в большинстве случаев невидимыми компаньонами видимых звезд являются также звезды и реже субзвезды. Но все-таки у двух систем компаньонами звезд являются, видимо, планеты. Одна из этих двух звезд — звезда Барнарда, которая имеет очень большую угловую скорость движения, достигающую 10,31 угл. сек/год. За это она была названа летящей звездой. Ван-де-Камп проанализировал информацию о положении этой звезды более чем за 60 лет, начиная с 1916 года. Эта информация хранится на фотопластинках (всего 3026 штук), полученных на 61-сантиметровом рефракторе. Тщательный анализ движения летящей звезды по этим данным показал, что на 2400 пластинках содержатся свидетельства изменения положения звезды, которые повторяются с периодом в 25 лет. Эти изменения движения звезды могут быть обусловлены ее обращением вокруг общего барицентра всей системы (звезда плюс невидимые для нас планеты). Изменения в угловой скорости достигают 4102 угл. сек/год. Звезда находится на расстоянии 1,81 парсек от Солнца. Масса ее мала и составляет 0,14 от массы Солнца. Поэтому она легко поддается действию на нее планет, в результате чего изменяется ее скорость. Анализ указанных данных показывает, что эти изменения в движении могли бы вызываться двумя планетами, массы которых составляют 0,8 и 0,4 массы Юпитера. Периоды обращения этих планет должны быть равны 11,7 и 26 лет. Большие полуоси орбит двух планет составляют примерно 2,7 и 3,8 а. е. Смещение звезды под действием этих планет должно составить 0,0114 а. е. Такая интерпретация не вполне однозначная. Такие же изменения в движении звезды могут вызвать три планеты, но уже с другими характеристиками. В данном случае это не так важно. На первом этапе чрезвычайно важно удостовериться хотя бы в принципиальном наличии планет у звезды.

Приведенные результаты у некоторых ученых вызывают сомнения. Это относится не к самому многолетнему, очень трудоемкому анализу и обработке фотопластинок, которые были выполнены исключительно тонко и аккуратно. Дело в самом инструменте наблюдения, его разрешающей способности. Ведь изменения в движении звезды, которые анализировались, составляли на фотопластинках всего доли микрона. Если бы эти наблюдения выполнялись прибором с разрешением в 10 — 100 раз выше, то сомнения не возникали бы. Но такие наблюдения, естественно, должны быть многолетними, поэтому и использовались эти данные. На основании экспериментальных данных сделали вывод, что и у компонента А двойной 61 Лебедя также имеются планеты. Раньше было обнаружено (или, как считают сейчас, заподозрено) существование планет у звезд Проксима Центавра, Крюгер 60А и 70 Змееносца. Все указанные звезды будут в дальнейшем исследоваться более тщательно.

Поиск неизвестных планетных систем позволил разработать и опробовать эффективные методы (как прямые, так и косвенные) их обнаружения. На будущее исследователи ставят задачу вести поиск планет по специально разработанной программе с привлечением как космических, так и крупнейших наземных телескопов. Как уже упоминалось, планируется также создание специальных приборов, предназначенных для этой цели.

Понятно, что наличие планеты еще не означает наличие цивилизации. Планета должна быть экологически пригодна для возникновения жизни и ее эволюции в развитую цивилизацию. На ней должна быть соответствующая температура, величина притяжения к ней, которая определяется ее массой, она должна иметь соответствующий период вращения и т. д.





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх