РАДИОТЕЛЕСКОПЫ И РАДИОИНТЕРФЕРОМЕТРЫ

Поиск внеземных цивилизаций производится с помощью радиотелескопов. По принципу работы они напоминают оптические телескопы — рефлекторы. В них так же, как и в оптическом телескопе-рефлекторе, электромагнитное излучение собирается на зеркале и затем поступает в приемник этого излучения. В оптическом телескопе собирателем служит вогнутое параболическое зеркало. Видимые лучи, отражаясь от этого зеркала, собираются в фокусе рефлектора, где получается изображение небесного объекта. В радиотелескопе собирателем радиолучей служит металлическое зеркало (антенна). Форма зеркала выбирается также параболической, поскольку только зеркало такой формы позволяет собирать в одну точку (фокус) падающие на него электромагнитные волны. Металлическое зеркало собирает падающие на него радиоволны в фокусе, где установлена маленькая дипольная антенна. Эта антенна называется облучателем, так как она облучается радиоволнами. Радиоволны вызывают в облучателе электрический ток, сила которого изменяется во времени по определенному закону. От облучателя в радиоприемное устройство электрический ток передается по волноводам, на выходе приемника подключаются самопишущие приборы или другие регистраторы.

Радиотелескоп, как и оптический телескоп, надо направить в определенную часть неба, а еще лучше — в определенную точку. Для этого надо иметь возможность поворачивать (или направлять другим путем) само зеркало рефлектора. Это можно осуществить разными путями. У телескопов рефлекторы могут двигаться вокруг двух осей — вертикальной и горизонтальной. Для борьбы с отрицательным влиянием явления параллакса создают специальные параллактические установки.

Зеркало рефлектора должно быть таким, чтобы оно было направлено в определенную точку. Это достигается увеличением площади зеркала. Собственно, важны не абсолютные размеры зеркала, а отношение его размера (радиуса) к длине рабочей волны, излучение на которой должен принять радиотелескоп. Поскольку электромагнитные волны оптического диапазона на много порядков меньше, чем радио диапазона, то и зеркало оптического телескопа может быть во столько же раз меньше зеркала радиотелескопа. Например, самый большой в мире телескоп, построенный в России и используемый в Специальной астрофизической обсерватории Академии наук России, имеет зеркало диаметром 6 метров. В то же время размеры зеркал радиотелескопов измеряются десятками и сотнями метров. Например, самый большой полноповоротный радиотелескоп имеет зеркало диаметром 100 метров. Неподвижное зеркало радиотелескопа в Аресибо (Пуэрто-Рико), которое вмонтировано в кратер вулкана, имеет диаметр, равный 300 метрам. Это зеркало может использоваться не только для приема радиоволн, но и для излучения, то есть в качестве передающей антенны. Другими словами, оно служит основной частью радиолокатора, способного посылать радиоволны в любые участки Галактики.

У нас в стране построен радиотелескоп РАТАН-600. Размеры его составляют 600 метров. Он имеет особую конструкцию. Его зеркало параболической формы состоит из 895 подвижных алюминиевых отражающих пластин размером 27,5 метра, из которых составлено кольцо диаметром 600 метров. Когда речь идет о приеме радиоволн с помощью радиотелескопа, то лучше телескоп характеризовать не шириной луча, а его разрешающей способностью. Она определяется тем расстоянием между двумя радиоисточниками, радиоволны от каждого из которых радиотелескоп способен зарегистрировать по отдельности. Это расстояние измеряют не в единицах длины, а в угловых единицах. Чем больше площадь зеркала, тем больше угловое разрешение радиотелескопа.

Радиотелескопы имеют более высокое угловое разрешение, чем оптические. Это связано с технологией их изготовления. Металлические зеркала радиотелескопов изготовлять проще, чем стеклянные. В том и другом случае надо добиться, чтобы поверхность зеркала была строго параболической. Но степень строгости для обоих телескопов различна. Зеркало надо отшлифовать так, чтобы глубина шероховатостей его поверхности была не больше одной десятой длины волны принимаемого излучения. Длина волны видимого света очень мала. Поэтому и глубина шероховатостей оптического зеркала должна быть также очень мала. Другими словами, зеркало оптического телескопа должно быть отполировано с допуском в сотые доли микрометра. Значительно проще обстоит дело в случае металлического зеркала радиотелескопа. Поскольку длина радиоволн во много раз больше длины волн оптического диапазона, то и допуск здесь может быть во много раз больше. Поверхность металлического зеркала радиотелескопа может быть «отполирована» с допуском в несколько миллиметров! Ясно, что такое зеркало изготовить проще, чем стеклянное. Например, шестиметровое зеркало самого большого оптического телескопа шлифовали в течение восьми лет. Работы велись в особых условиях. Помещение, где проводились работы, было окружено тремя рядами стен. Для изготовления металлического зеркала этого не надо делать. Более того, оно может быть изготовлено не сплошным, а в виде решета. Если дырка решета меньше величины допуска, то радиоволны ее не заметят. Зато какой выигрыш получается в массе антенны, которую надо вращать и двигать!

Радиотелескопы еще экономичны и тем, что на одно и то же зеркало можно принимать радиоволны различной длины. Радиоволны приходят из космоса с самыми различными длинами волн. Насколько все усложнилось бы, если бы для приема излучения на каждой длине волны пришлось создавать специальное зеркало! Для того чтобы переключить радиорефлектор с одной длины волны на другую, достаточно заменить маленькую антенну в центре, то есть облучатель. Само же зеркало собирает радиоволны в фокусе независимо от их длины.

Кроме пространственного разрешения, очень важной характеристикой радиотелескопов является их чувствительность. Чем выше чувствительность, тем более слабые радиосигналы способен принять радиотелескоп. Для повышения чувствительности надо, в частности, увеличивать площадь зеркала. Но для того чтобы принять слабый радиосигнал, мало иметь большое зеркало. Надо еще располагать высокочувствительным радиоприемником. Но повышать чувствительность приемников до бесконечности нельзя. Этого не позволяют физические процессы, которые протекают в проводах до входа в приемник. В них имеется непрерывное (тепловое) движение электронов, которое зависит от температуры проводника. В результате к приемнику подводится тепловой шум, который не позволяет принимать сигналы меньше определенного порогового значения. Поступившие в усилитель приемника тепловые сигналы усиливаются так же, как и полезные сигналы, созданные в проводнике принятыми из космоса радиоволнами.

Но это не все. Имеется еще очень важное обстоятельство, ограничивающее чувствительность радиоприемника. Это собственные его шумы. Причиной их являются процессы в различных радиодеталях. Проблема устранения этих шумов очень непростая. Решение ее очень важно не только для радиоастрономии, но и для многих других областей научных исследований, а также практических задач, где требуется принимать слабые радиосигналы на фоне превосходящего их шума. К настоящему времени уже сделано много для решения данной проблемы. Специалисты научились выделять очень слабые полезные радиосигналы из-под превышающих их шумов. Но для технического воплощения найденных решений требуется значительное усложнение радиоприемной аппаратуры.

Возможности радиотелескопов можно значительно расширить, если их использовать не поодиночке, а парами. Их можно включить так, что приходящие из космоса радиоволны будут суммироваться. Более конкретно это происходит следующим образом.

Две волны одинаковой длины можно так расположить друг относительно друга, что при сложении они полностью погасят друг друга, то есть дадут ноль. Для этого они должны быть в противо-фазе друг к другу. Если же они будут в фазе (то есть гребень одной волны точно совпадет с гребнем другой), то они сложатся и результирующая волна будет иметь интенсивность (амплитуду), равную сумме интенсивностей обеих волн. Если амплитуды изначальных волн были одинаковы, то произойдет удвоение амплитуды первоначальной волны. Источник излучения, который посылает волны, находящиеся в фазе друг с другом, называют когерентным. Мощность излучения равна квадрату интенсивности. Поэтому при когерентном сложении, когда интенсивность волны удваивается, мощность излучения увеличивается в четыре раза (она прямо пропорциональна квадрату интенсивности).

Идея использования радиотелескопов парами состоит в том, что при определенном расположении телескопов принятые каждым из них волны будут складываться когерентно. При этом амплитуда (интенсивность) увеличится вдвое, а мощность — в четыре раза. Для того чтобы сложение волн происходило когерентно, надо выбрать длину электрического кабеля от каждого из радиотелескопов до радиоприемника так, чтобы сигналы от каждого радиотелескопа попадали в приемник одновременно. Описанное сложение волн называется интерференцией. Поэтому включенная таким образом в единую систему пара радиотелескопов называется радиоинтерферометром.

Радиотелескопы располагаются на некотором расстоянии друг от друга, которое называется базой. Радиоволны падают на их зеркала из космоса под определенным углом. Если это направление изменится, то при той же базе условие одновременного прихода сигналов в приемник нарушается. Понадобится отрегулировать длину кабеля (волновода). В результате вращения Земли находящиеся на ней радиотелескопы непрерывно меняют направление своих лучей относительно космических объектов, а значит, меняется и направление радиоволн, приходящих к телескопу от данного источника. Эти изменения не компенсируют непрерывным изменением длины волновода. Их просто учитывают при обработке данных измерений, поскольку они будут приводить к изменению интенсивности. Всякое отклонение угла падения oт оптимального (при котором происходит когерентное сложение радиоволн) приведет к уменьшению интенсивности суммарной волны.

Возможности радиоинтерферометров значительно больше, чем отдельных радиотелескопов. Так, если база радиоинтерферометра составляет 8000 километров, то он позволяет проводить измерения радиоизлучения с разрешением в 0,0001 угловой секунды. Один радиотелескоп этого интерферометра находится в Крыму, а другой — в Хайситекской обсерватории (США). Под углом в 0,0001 секунды дуги виден с Земли след космонавта на поверхности Луны! Максимальное угловое разрешение оптических телескопов составляет полсекунды дуги. Вот какими зоркими стали современные радиоинтерферометры. Чем больше база радиоинтерферометра, тем больше его разрешение. Радиотелескопы и радио-интерферометры, установленные на поверхности Земли, работают с серьезными ограничениями. В первую очередь, их работе мешает земная атмосфера. Так как она неоднородна, то и отдельные радиолучи проходят через среду с разными характеристиками, и поэтому их фазы колебаний и амплитуды будут отличаться. Говоря научным языком, можно сказать, что они перестают быть строго когерентными. Это изменяет получаемое изображение. Кроме того, атмосфера и ионосфера поглощают радиоволны определенной длины, то есть становятся для этих волн непрозрачными. Имеются и чисто земные ограничения. Это весовые и ветровые ограничения, и индустриальные радиопомехи, и, наконец, огромная «космическая» стоимость антенн таких размеров, которые надо бы иметь. Поэтому их создание нереально.

Многие из этих ограничений или снимаются, или ослабляются, если радиотелескопы поднять над земной атмосферой, вынести в космос. Здесь металлические конструкции могут быть более ажурными, легкими, поскольку ветровых нагрузок нет, а притяжение меньше. Но главное даже не в этом, а в том, что между объектом и прибором отсутствует неоднородная атмосфера и, кроме того, база интерферометра не ограничивается размерами Земли. Возможности интерферометров значительно возросли после того, как в 1970 году французский астроном А. Лабейри предложил эффективный метод, основанный на анализе зернистой структуры (состоящей из пятнышек, крапинок) телескопического изображения космических объектов. Поэтому метод был назван методом спекл-интерферометрии. Принцип, позволяющий это сделать, можно понять из такого примера. Если мы фотографируем рой пчел при плохой освещенности и невысокой чувствительности фотопленки, то вынуждены будем взять большую экспозицию. Но так как пчелы роя непрестанно движутся, то фотография получится размытой. На ней не удастся разглядеть каждую пчелу в отдельности. Так мы получим только общий вид пчелиного роя, как говорят, получим информацию о его форме, размерах и грубой (размытой) структуре. Далее представим себе, что у нас появилась очень чувствительная пленка и мы можем вести съемку с очень малой выдержкой. Тогда на каждой такой фотографии движение пчел не отразится, они будут видны неподвижными. Если вернуться от роя пчел к астрономическим объектам, то роль одной пчелы заменится ролью какого-либо структурного элемента (пятна, крапинки, зерна) на объекте. Чувствительность «фотопленки», то есть регистрирующей аппаратуры телескопов, можно существенно повысить. Можно ее повысить не только существенно, но предельно. В настоящее время для этих целей используются устройства, позволяющие во много раз усиливать с помощью электронной аппаратуры интенсивность света. Они называются фотоэлектронными усилителями (ФЭУ). С помощью ФЭУ можно поймать даже один-единственный фотон, минимальную порцию света. Это и есть предел, который уже достигнут. Итак, метод спекл-интерферометрии работает так. Ведут съемки объектов с очень малой экспозицией. Но делают не один кадр, а тысячи и миллионы их. Далее с помощью ЭВМ и специально разработанных программ эти кадры «складывают». При этом сохраняется информация о зернистой структуре объекта, то есть угловое разрешение очень сильно повышается. Если этого метода не применять, то «складывание» кадров происходит непосредственно в регистрирующем устройстве (как на фотопленке при большой экспозиции) и информация о такой структуре объекта теряется. В наше время этот метод широко внедряется в десятках обсерваторий мира, то есть они оснащаются спекл-интерферометрами.

Не надо думать, что с выносом телескопов и интерферометров за пределы земной атмосферы полностью отпадает необходимость бороться с последствиями того, что среда, в которой распространяются радиоволны или свет, является неоднородной. Поэтому метод спекл-интерферометрии применяется и при проведении измерений на космических интерферометрах.

Антенные поля в космосе могут создаваться с помощью автоматически развертывающихся конструкций, как это уже делается. При этом можно создать антенные поля, площадь которых во много раз превышает площадь земных антенн. Доставлять на орбиту эти конструкции будут транспортные космические системы, которые способны будут доставлять в космос строительный материал для энергетических установок, технологических комплексов и космических колоний.

Показано, что космический радиотелескоп можно установить на геостационарной орбите. Его размер может достигать 10–20 километров. Но важен не только размер антенны, но и длина волны, на которой работает интерферометр. Важно, в конечном счете, отношение минимальной рабочей длины волны к диаметру антенны. С выводом интерферометров в космос чувствительность их может быть увеличена более чем в сто тысяч раз. Надо иметь в виду, что чувствительность увеличится примерно в 10 раз только за счет уменьшения промышленных помех.

Разрешающая способность при этом также увеличится примерно во столько же раз. Она возрастает за счет увеличения базы интерферометра. Кстати, тут возможны различные варианты. Можно один телескоп оставить на Земле, а другой разместить на спутнике. При этом получится наземно-космический интерферометр. Высота орбиты спутника может быть относительно небольшой (400–600 километров). В такой комбинации земного и космического радиотелескопов достигается новый специфический эффект, обусловленный тем, что оба интерферометра обращаются вокруг общего центра несинхронно, а относительная их скорость большая. Это позволяет получать более богатую информацию.

Можно несколько видоизменить приведенный вариант — использовать спутник с апогеем до 1 миллиона километров. При этом угловое разрешение увеличится в сто раз. И наконец, можно космический радиотелескоп вынести на удаление около 100 миллионов километров от Земли. Можно считать, что для такого радиотелескопа антенна уже отработана в процессе подготовки эксперимента по исследованию поверхности Венеры. Расстояние между зеркалами (база) интерферометра, видимо, достаточное. Но точность инструмента ограничивается влиянием неоднородностей космической среды. Это может затруднить обнаружение астроин-женерных сооружений внеземных цивилизаций в космосе.

Размещение телескопов в космосе со столь большой базой открывает новые возможности. Если взять не два, а три радиотелескопа, разнесенных на большие расстояния, то становится возможным прямое измерение расстояний до объектов — источников радиоволн. Более того, при этом можно получить объемное изображение данного объекта.

Если радиотелескопы использовать группами (не подключая их по схеме радиоинтерферометра), то достигается выигрыш за счет увеличения суммарной площади собирательного зеркала. Так, голландская система «Вестербарк» состоит из 12 зеркал, каждое диаметром по 25 метров. Они соответствующим образом расположены и соединены. Система этих зеркал вытянулась на полтора километра. Эта установка на длине волны 21 сантиметр имеет разрешение около 20 угловых секунд. Подобная американская система «VELA», которая начала работать в 1979 году, состоит из 25 радиотелескопов диаметром по 25 метров. Но они расположены в форме буквы Y. Вся площадка, занятая ими, имеет протяженность 47 километров. Разрешающая способность этой системы на длине волны 6 сантиметров составляет 0,3 секунды дуги. «Атлас неба» составлен по данным многолетних наблюдений на оптическом телескопе обсерватории Маунт-Паломар с разрешением в три раза меньше.





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх