ПРОСТРАНСТВО И ВРЕМЯ И ЧЕРНЫЕ ДЫРЫ

Между всеми телами действуют силы тяготения. И. Ньютон установил закон, которому эти силы подчиняются. Он определил, что силы тяготения прямо пропорциональны произведению масс взаимодействующих сил и обратно пропорциональны квадрату расстояния между взаимодействующими телами. Это значит, что чем больше масса тел, тем с большей силой они притягивают друг друга. Но эта сила притяжения тем меньше, чем больше расстояние между взаимодействующими телами. Если это расстояние увеличится в два раза, то сила уменьшится в четыре раза (два в квадрате). Любые проводимые измерения всегда подтверждали абсолютную справедливость закона Ньютона. Но оказалось, что этот закон тяготения на самом деле не точен. Его неточность и, более того, неправильность проявляют себя в условиях, которые отличаются от наших, земных. Любопытно, что это было установлено не путем наблюдений, измерений, а теоретически, путем


Таблица 7. Двадцать ближайших звезд


Таблица 8. Двадцать ярчайших звезд


Таблица 9. Десять звезд с самым большим собственным движением


логических рассуждений, путем анализа. Это открытие сделал Альберт Эйнштейн. Он изложил его в своей теории относительности.

До Эйнштейна пространство, время и силы притяжения рассматривались независимо. Например, считалось, что время течет одинаково быстро независимо от того, где мы находимся, в какой точке пространства, на Земле или на сверхмассивной звезде в далеком космосе. Что касается сил притяжения, гравитации, то они считались независимыми как от пространства, так и от времени. Эйнштейн показал теоретически, что пространство, время и поле гравитации жестко связаны друг с другом. Поэтому изменение одной из этих величин обязательно вызовет изменение двух других. Так, гравитация действует на время. Вблизи массивных небесных тел время течет по-иному, оно замедляет свой ход. Это и сейчас трудно постичь — и не только потому, что тысячи лет люди считали, что время течет само по себе, но и потому, что в нашей земной жизни изменение скорости времени просто не происходит. Мы находимся в условиях действия слабых сил притяжения. Еще Аристотель считал, что существует абсолютное время. В своей книге «Физика» Аристотель писал: «Время, протекающее в двух подобных и одновременных движениях, одно и то же. Если бы оба промежутка времени не протекали одновременно, они все-таки были бы одинаковы… Следовательно, движения могут быть разные и независимые друг от друга. И в том и в другом случае время абсолютно одно и то же». И. Ньютон практически утверждал то же самое: «Абсолютное, истинное, математическое время, взятое само по себе, без отношения к какому-нибудь телу, протекает единообразно, соответственно своей собственной природе».

Конечно, и другие мыслители интуитивно чувствовали, что время изменчиво. Так, еще в I веке до н. э. Лукреций Кар в своей книге «О природе вещей» писал: «Время существует не само по себе… Нельзя понимать время само по себе, независимо от состояния покоя и движения тел».

Кстати, Лукреций Кар попал прямо в десятку, сказав, что время зависит от движения. Именно это и показал в своей теории относительности Эйнштейн. Он доказал, что никакого абсолютного времени нет. Нет потому, что течение времени зависит от движения (а в природе все движется). Оно зависит и от тяготения. В сильном поле тяготения все процессы (скорость течения времени определяется скоростью течения какого-либо процесса) замедляются. Значит, замедляется и время.

Но от поля тяготения зависит не только время, но и пространство. Оно меняет свои геометрические свойства, искривляется. Геометрия, которую мы изучали в школе, является геометрией неискривленного пространства. В таком пространстве плоскость есть плоскость. Но если это пространство находится вблизи очень массивного космического тела, то эта плоскость может превратиться в сачок.

Считая, что время является одним и тем же, абсолютным, ни от чего не зависимым, Ньютон не мог допустить, чтобы менялось пространство. Он писал: «Абсолютное пространство, по своей собственной природе независимое от всякого отношения к внешним предметам, остается неизменным и неподвижным». Ньютон представлял себе время чем-то вроде бесконечной «сцены», на которой разыгрываются разные события, от которых время (сцена) не зависит. Что же касается искривления пространства и свойств различных геометрических фигур в таком пространстве, то Н. Лобачевский создал для таких условий особую геометрию. В этой геометрии две параллельные прямые могут пересекаться. Это возможно потому, что они находятся не в плоскости, а в искривленном пространстве. Так, они могут находиться на поверхности сферы.

Поскольку пространство и время очень тесно взаимосвязаны, то есть смысл объединить их в одно понятие «пространство — время». Пространство имеет три измерения — длину, ширину и высоту. А тут добавляется еще одно измерение — время. Поэтому говорят о четырехмерном пространстве.

Все сказанное выше хорошо иллюстрируется условиями вблизи черной дыры. Черная дыра, как и любое другое тело, обладающее массой, притягивает к себе другие тела. Поскольку масса черной дыры очень большая, то сила притяжения к центру черной дыры также очень большая. Если определять эту силу по формуле (закону) Ньютона, то в центре черной дыры сила притяжения окажется бесконечно большой. Это надо понимать так. Если мы мысленно приближаем данное тело к центру черной дыры, то расстояние между ними стремится к нулю. Если какое-либо число делить на нуль, то получится бесконечность. Значит, в центре черной дыры (как, собственно, и в центре любой звезды или вообще любого тела) сила притяжения бесконечно велика. Но если пользоваться формулой Эйнштейна, то сила притяжения становится бесконечной еще до того, как тело достигнет центра черной дыры, то есть на определенном расстоянии от этого центра. Это расстояние назвали гравитационным радиусом. Величина этого радиуса зависит от массы небесного тела. Чем меньше масса тела, тем меньше этот радиус. Для Земли гравитационный радиус равен одному сантиметру. Для Солнца он равен трем километрам, тогда как радиус Солнца составляет 700 тысяч километров. В обычных, рядовых случаях (как для Земли или даже Солнца) результаты, полученные по Ньютону и Эйнштейну, отличаются очень мало. Однако в случае очень массивного тела это различие очень большое.

Величину гравитационного радиуса можно определить по формулам теории относительности Эйнштейна. Это сделал К. Шварцшильд, поэтому гравитационный радиус еще называют радиусом Шварцшильда. Соответственно сферу с этим радиусом называют сферой Шварцшильда. Эта сфера имеет глубокий физический смысл. В пределах этой сферы притяжение столь велико, что от него не может ничто оторваться, даже свет. Так что звезда, радиус которой равен или меньше гравитационного радиуса, является невидимой. Другими словами, она является черной (от черного тела не исходит никакого излучения). Такую звезду называют не просто черной, но черной дырой. Дырой потому, что в нее все проваливается. Все, что оказалось на удалении от центра звезды, равном гравитационному радиусу. В черную дыру все проваливается потому, что на гравитационной сфере любое тело приобретает бесконечно большое ускорение свободного падения.

Если данное тело путем сжатия достигнет радиуса, равного гравитационному радиусу, то дальше оно само будет неумолимо сжиматься, поскольку на него будет действовать бесконечно большая сила притяжения, направленная к центру. Но если тело сжимается такой огромной (бесконечно большой) силой, то процессы (в том числе и время) здесь будут протекать по-иному. Так, при свободном падении наступает состояние невесомости. Другими словами, свободно падающее тело не испытывает действия гравитационной силы. Таким образом, на поверхности свободно сжимающегося тела другое тело не будет ощущать на себе никакой силы тяготения. Собственно, это происходит как внутри гравитационной сферы, так и вне ее.

Таким образом, увлекаемое тяготением вещество не может остановиться на гравитационной сфере. В противном случае оно испытало бы на себе бесконечную силу тяготения. Но это падающее к центру вещество не может остановиться и тогда, когда окажется внутри гравитационной сферы. Если любое тело (частица, вещество, космический корабль и т. д.) оказалось внутри гравитационной сферы, то оно будет обязательно падать к центру. Такое тело испытывает на себе катастрофическое сжатие. Это состояние физики называют релятивистским коллапсом. Таким образом, черную дыру можно получить (чисто мысленно) так. Надо любое тело сжать до гравитационного радиуса. Дальше все пойдет само — тело под действием бесконечно большой силы гравитации само сожмется в точку, или почти в точку. Но такой процесс образования черных дыр является не просто мысленным. Во Вселенной он является вполне реальным. В ходе естественной эволюции во Вселенной большие массы могут самопроизвольно превращаться (и превращаются) в черные дыры.





 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх