НАША ГАЛАКТИКА

Многие из нас наблюдали на небе Млечный Путь — пересекающую звездное небо неярко светящуюся полосу. Он кажется нам где-то там, далеко. На самом деле наша планета находится внутри этого семейства звезд. Млечный Путь — это наша Галактика.

Первым из астрономов нашего времени, кто понял, что Млечный Путь не просто большое скопление звезд, а единая звездная система, был английский астроном Уильям Гершель (1738–1822). С помощью изготовленных им телескопов он проводил систематические обозрения звездного неба, исследовал звездные скопления, двойные звезды и туманности. Обобщив полученные данные, ученый убедился в том, что на небе можно наметить большой круг, который рассекает все небо на две равные части таким образом, что если приближаться к нему с любой стороны, то число звезд, которые попадают в поле зрения телескопа, неуклонно возрастает, а на самом круге число звезд становится наибольшим. Этот круг был назван галактическим экватором. Именно вдоль этого круга — галактического экватора стелется Млечный Путь. Эта светящаяся полоса звезд опоясывает небо.

Гершель пришел к выводу, что семейство звезд — Млечный Путь представляет собой диск, своего рода толстый блин, внутри которого находится и Земля. Однако доказательство этого было получено только в 1920-е годы, когда ученые обнаружили объекты, не входящие в нашу Галактику. Именно в это время было установлено, что спиралеобразные и некоторые другие туманности также являются звездными системами. Но эти системы находятся на огромных расстояниях от нас. По своему строению и размерам они сравнимы с нашей Галактикой. Но все эти системы-галактики (а их множество) очень разнообразны по форме и составу звезд.

То, что Земля находится внутри Галактики, для наблюдения звезд и хорошо и плохо. Хорошо потому, что облегчает исследование звезд, ведь все составные части Галактики у нас прямо «под рукой», во всяком случае, значительно ближе, чем составные части других галактик. Плохо же потому, что затрудняет исследование нашей же Галактики, ее строения. Его было бы легче исследовать, если бы можно было взглянуть на нее извне, как мы смотрим на другие галактики. Ясно, что легче составить план стеклянного сооружения, если его рассматривать извне, нежели если находишься внутри одной из ячеек этого сооружения. Проведенные разными астрономами исследования позволили составить достаточно детальную картину устройства нашей Галактики. Форма Галактики напоминает круглый сильно сжатый диск. Галактика имеет плоскость симметрии, которая разделяет ее на две равные части. Ось симметрии проходит через центр диска — Галактики. Она перпендикулярна к плоскости симметрии. В отличие от обычного диска, у Галактики нет четко очерченной границы. В Галактике звезды располагаются тем теснее, чем ближе данное место к плоскости симметрии Галактики. В самом центре Галактики плотность звезд максимальна. Здесь на каждый кубический парсек приходится несколько десятков звезд. Плотность звезд в центральной части Галактики в несколько сотен раз больше, чем в окрестностях Солнца. По мере удаления от оси и плоскости симметрии плотность звезд падает. Особенно она уменьшается при удалении от плоскости симметрии. Вид Галактики сбоку и сверху изображен на рисунках 1 и 2 соответственно.

Граница Галактики размыта. Поэтому точно определить ее можно только в том случае, если задать плотность звезд, которая характерна за пределами Галактики. Ученые договорились считать границей Галактики те места, где одна звезда приходится на 1000 кубических парсек пространства. Тогда диаметр Галактики приблизительно равен 30 000 пс, а толщина Галактики — 2500 пс. Из соотношения этих размеров видно, что Галактика является действительно сильно сжатой системой, поскольку ее диаметр в двадцать раз больше ее толщины. Можно сравнить размеры Галактики с размерами Солнечной системы. Свет проходит всю Солнечную систему за 12 часов, тогда как всю Галактику он проходит за сто тысяч лет.

Что касается Солнца, то оно находится практически полностью в плоскости симметрии Галактики. Но от центра Галактики Солнце находится далеко, на расстоянии около 10 000 пс. Это ближе к ее границе, чем к центру.

Количество звезд в Галактике огромно — оно превосходит сто миллиардов.

При измерении в спектрах звезд линий поглощения был обнаружен межзвездный газ. Это поглощение вызывалось межзвездным кальцием и межзвездным натрием. Как образуются эти линии? Кальций и натрий заполняют все пространство между наблюдателем и звездой, и через них проходит свет от звезд. Поскольку эти натрий и кальций никак не связаны со звездами, то линии поглощения, создаваемые ими, одинаковые для всех звезд. Кроме того, лучевая скорость, определенная по линиям межзвездного кальция и натрия, очень отличается от лучевой скорости, которая получается по линиям спектра, принадлежащим самой звезде.

Вначале в межзвездном газе обнаружили натрий и кальций. Затем обнаружили кислород, титан и другие элементы. Были обнаружены и некоторые молекулярные соединения: циан СN, углеводород СН и другие.

Плотность межзвездного газа определяется по интенсивности его линий. Измерения показали, что эта плотность очень мала.

Рис. 1. Млечный Путь (вид нашей Галактики сбоку)

В самом центре Галактики плотность межзвездного газа должна быть наибольшей. Но и здесь имеется всего по одному атому в объеме 10 000 см3. Сравним с плотностью воздуха в обычных земных условиях, которая составляет 2,71019 молекул на один кубический сантиметр.

Больше всего в межзвездном газе водорода. Но длительное время его не удавалось обнаружить. Это связано с особенностями физического строения атома водорода, а также с характером поля излучения в Галактике. Дело в том, что плотность излучения в Галактике очень мала. Это обусловлено большими расстояниями между звездами. Для сравнения укажем, что если убрать излучение Солнца, отраженный свет от Луны, все планеты и вообще все источники

света на Земле, то остается примерно такое же излучение, как в Галактике. Это излучение исходит от звезд. А раз мало излучения, мало фотонов (квантов), то и мала вероятность того, что они поглотятся атомами и молекулами межзвездного газа. Тем более что этих атомов и молекул также очень мало. Есть еще одно ограничение — это энергия кванта. Она должна быть определенной для того, чтобы ее поглотил атом или молекула. Если энергия кванта велика, то атом ионизируется, то есть энергия кванта уходит на отрыв от атома орбитального электрона. Если же энергия кванта невелика и ее не хватает на отрыв электрона от атома, то атом поглощает эту энергию, в результате чего атом возбуждается. Это значит, что орбитальный электрон покидает свое постоянное стабильное место и переходит на другую орбиту. Такой атом уже не стабилен, а возбужден. Он со временем может вернуться в стабильное, устойчивое состояние, но для этого ему надо избавиться от той энергии, которую он поглотил. Иными словами, при переходе в свое устойчивое, основное состояние атом должен из-

Рис. 2. Млечный Путь (вид нашей Галактики сверху)


лучить квант той же частоты, а значит, и энергии, которую он поглотил.

В межзвездном газе атомы находятся в возбужденном состоянии очень недолго, всего лишь ничтожную долю секунды. Поэтому большинство атомов межзвездного газа находится в основном в нейтральном, невозбужденном состоянии.

Для того чтобы атом нейтрального водорода перешел в возбужденное состояние, он должен поглотить весьма приличную порцию энергии. Это значит, что излучение, которое должен поглотить атом водорода, должно иметь высокую частоту (чем больше частота кванта, тем больше его энергия). Только в этом случае атом водорода образует линию поглощения. Но эта линия лежит в далекой ультрафиолетовой части спектра. При обычных наблюдениях эта линия в спектрах звезд не получается. По сути, далекое ультрафиолетовое излучение полностью поглощается атмосферой Земли. Для того чтобы замерить эти линии поглощения, надо подняться над атмосферой. Поднять приборы можно с помощью спутников и высотных ракет. Собственно, это и сделали исследователи.

Если атом водорода ионизован, то он и вовсе не способен поглощать излучение. Дело в том, что ионизованный атом водорода — это всего-навсего один протон. Один-единственный орбитальный электрон он потерял при ионизации. Поэтому он уже не способен возбуждаться, — нет электрона, который мог бы поглотить энергию.

Что же касается возбужденных атомов нейтрального водорода в межзвездном пространстве, то их чрезвычайно мало. В атмосферах звезд именно возбужденные атомы водорода создают линии поглощения водорода. Для того чтобы атом водорода перешел в еще более высокое возбужденное состояние, он, уже находясь в возбужденном состоянии, должен поглотить квант не очень большой энергии. Частота этого кванта должна соответствовать видимой области спектра. Именно здесь и образуются линии поглощения.

Поскольку в атмосферах звезд очень большая плотность излучения, там много возбужденных атомов. Поэтому в атмосферах звезд водород дает четко наблюдаемые линии. В межзвездном газе же водород оказался весьма трудноуловимым. Собственно, «уловили» водород не по его линиям поглощения, а по светлым (эмиссионным — излучательным) линиям. Суть таких измерений состоит в следующем. Если на определенном участке неба, куда наведен спектрограф, нет звезд, то в его поле зрения попадает только толща межзвездного вещества. Это вещество содержит как ионы водорода, так и свободные электроны. Они при столкновениях объединяются и образуют нейтральные атомы водорода. Но в каждом таком акте объединения должна быть сброшена лишняя энергия. Она и сбрасывается в виде излучения определенной частоты. Собственно излученный при этом квант должен иметь такую же частоту, какую поглотил атом при ионизации. Вновь объединенный атом водорода может находиться некоторое время в возбужденном состоянии. В основное, невозбужденное состояние он может переходить не сразу, а поэтапно. Другими словами, от избыточной энергии он избавляется не в результате излучения одного кванта, а путем поэтапного излучения нескольких квантов, но меньшей частоты. Среди этих квантов могут быть и очень низкочастотные, которые находятся в видимой части спектра. Именно эти кванты видимого света и выдают присутствие нейтрального водорода в межзвездном газе. Путем измерения этих излучательных (эмиссионных) линий удалось узнать очень многое о межзвездном водороде.

Так было установлено, что нейтральный водород является самым распространенным газом в пространстве между звездами. Число атомов нейтрального водорода примерно в тысячу раз превосходит число атомов всех остальных элементов, взятых вместе.

В самом плотном месте Галактики на каждый атом водорода приходится 2–3 кубических сантиметра. По космическим понятиям это большая плотность. Плотность всего газового вещества около плоскости Галактики составляет 5–8 10–25 г/см3. Это в основном водород, так как масса газа других элементов очень мала. Чтобы проиллюстрировать эту малость, приводят такой факт. Один обыкновенный выдох, который совершает человек, способен создать в кубе с ребром в 400 километров такую же плотность газа, что и плотность межзвездного газа.

Сам межзвездный газ распределен по всей Галактике очень неравномерно. В определенных местах он образует облака, в которых его плотность в десятки раз превышает среднюю плотность межзвездного газа. Естественно, есть и места, где межзвездный газ чрезмерно разрежен. По мере удаления от плоскости симметрии плотность звезд быстро падает. Так же быстро падает плотность межзвездного газа. Общая масса межзвездного газа в Галактике составляет примерно один-два процента от общей массы всех звезд.

Мы уже говорили о том, что часть атомов водорода ионизуется излучением. Самое интенсивное излучение создают звезды — горячие гиганты. Поэтому вокруг них водород ионизован. Ионизацию производит ультрафиолетовое излучение. У разных звезд горячих гигантов разная светимость и разная температура. Чем они больше, тем большую область вокруг звезды ионизует ее излучение. Ученые рассчитали, что при плотностях межзвездного водорода 2–0,5 атома на 1 см3 около звезды спектрального класса О, весь водород ионизован внутри сферы с радиусом 30 — 100 пс. Например, около В1 радиус зоны ионизации звезды составляет 10–30 пс, а около звезды В2 он составляет 4 — 12 пс. По мере перехода к звездам более поздних спектральных классов радиус зоны ионизации очень быстро уменьшается. Так, для звезд класса АО радиус ионизации составляет только малую долю парсека. За пределами зон ионизации практически весь водород находится в нейтральном состоянии.

Подведем итог. Весь водород в межзвездном пространстве нашей Галактики находится в двух состояниях: нейтральном и ионизованном. Зоны нейтрального водорода специалисты обозначают НI, а зоны ионизованного водорода — НII. Границы между зонами нейтрального и ионизованного водорода всегда очень резкие. Практически нет постепенного перехода от ионизованного водорода к нейтральному. Зоны ионизованного водорода могут сливаться друг с другом. Это имеет место тогда, когда звезды — горячие гиганты располагаются сравнительно близко друг к другу.

Когда ионизованный водород превращается в нейтральный водород, излучаются эмиссионные линии водорода. Они образуются при переходах атома водорода после соединения иона со свободным электроном из высоких возбужденных состояний в более низкие. Из всех наблюдаемых линий наиболее интенсивной оказывается линия Н.

Ее длина волны равна 6563 А (ангстрем). Эта линия излучения возникает при переходе атома водорода из второго возбужденного состояния в первое возбужденное состояние. Эта эмиссионная линия расположена в красной части спектра. Поэтому, чтобы обнаружить в межзвездном газе ионизованный водород, участки неба фотографируют с помощью фильтров, которые пропускают только излучение в узкой части спектра около области 6563 А. Здесь находится линия На. Такой прием позволяет выделить излучение в линии На, поскольку относительная яркость зоны НII в сравнении с другими объектами значительно повышается.

Области нейтрального водорода в нашей Галактике занимают примерно в десять раз большее пространство, чем области ионизованного водорода.

Измерения излучения нейтрального водорода в межзвездной среде позволили установить, что атомы водорода излучают и в диапазоне радиоволн (длина волны 21 сантиметр). Это низкочастотное излучение генерируется потому, что невозбужденный нейтральный водород может находиться в двух энергетически близких состояниях. Состояния эти отличаются друг от друга совпадением или несовпадением ориентации магнитных полей протона и электрона. Когда магнитные моменты этих частиц направлены в противоположные стороны, энергетический уровень атома водорода более высокий. Когда они направлены в одну сторону, энергетический уровень атома водорода более низкий. При этом переходы с более высокого энергетического уровня на более низкий сопровождаются излучением квантов с длиной волны, равной 21 сантиметру. Это и понятно, поскольку лишняя энергия должна быть сброшена. Это происходит то с одним атомом, то с другим. Хотя излучает радиоволны этой длины волны далеко не каждый атом водорода, тем не менее, это радиоизлучение удается регистрировать. Ясно, что его интенсивность тем больше, чем больше атомов водорода попадают в сектор наблюдения, чем больше их находится на луче зрения. Наиболее благоприятные условия реализуются в том случае, когда наблюдения ведутся в направлениях, близких к галактическому экватору. В этом случае радиоизлучение межзвездного водорода регистрируется даже при использовании радиотелескопа умеренных размеров.

Измерение нейтрального водорода в межзвездном пространстве нашей Галактики позволило установить движения вещества Галактики, в частности ее вращение. При этом используется общеизвестный эффект (эффект Доплера), заключающийся в том, что частота излучения движущегося тела изменяется в зависимости от того, удаляется ли оно от наблюдателя или же приближается к нему. Измеряя смещение частоты излучающего тела, можно не только сказать, удаляется ли оно или приближается, но и определить скорость этого смещения излучающего тела по лучу зрения. Такими измерениями можно определить не всю скорость излучающего тела, а только его радиальную составляющую. Движение излучающего тела поперек луча зрения измерением эффекта Доплера определить нельзя.

Если вести наблюдения за нейтральным водородом в разных местах Галактики, то есть если регистрировать радиоизлучение нейтрального водорода на длине волны 21 сантиметр, то можно определить его радиальные скорости. Поскольку длина волны меняется (она или больше, или меньше 21 сантиметра), то по форме этого изменения судят о радиальной скорости. Если измерения проведены для разных участков Галактики, то можно нарисовать пространственную картину движения нейтрального водорода в Галактике. Если провести комплексный анализ всех профилей эмиссионной линии 21 сантиметр (для различных направлений), то можно определить закон вращения всей массы нейтрального водорода Галактики. Рассуждая дальше, можно предположить, что нейтральный водород в Галактике вращается так же или почти так же, как вращается сама Галактика. А это уже очень важная информация. Специалисты считают, что такой метод позволяет вывести закон вращения нашей звездной системы. Другими словами, этот метод позволяет определить, как изменяется угловая скорость вращения звездной системы (Галактики) по мере удаления от ее центра к ее окраинным областям.

В результате измерений по описанному методу было установлено, что угловая скорость вращения Галактики уменьшается по мере удаления от ее центра. Это уменьшение сначала очень быстрое. Затем оно существенно замедляется. Так, на расстоянии 8 кпс от центра угловая скорость вещества Галактики равна 0",0061 в год. Это значит, что полный оборот вокруг оси симметрии Галактика совершает за 212 миллионов лет. Наше Солнце находится на удалении 10 кпс от центра Галактики. На этом расстоянии угловая скорость вращения вещества Галактики составляет 0",0047 в год. Это значит, что период обращения вещества Галактики на этом удалении от ее центра равен 275 миллионам лет. Но нам (землянам) именно этот период наиболее интересен, поскольку наша планета находится именно на таком расстоянии от центра Галактики. Поэтому-то период, равный 275 миллионам лет, и был назван галактическим годом. На самом деле, на каждом удалении от центра Галактики галактический год разный. Чем дальше от центра Галактики, тем он длиннее.

Если умножить угловую скорость вращающегося тела на его радиус, то получится линейная скорость на удалении от центра, которое равно радиусу. Если эту операцию проделать для расстояния, равного удалению Солнца от центра Галактики, то получится, что линейная скорость движения Солнца вокруг центра Галактики равна 220 км/с. Другими словами, при движении вокруг центра Галактики Солнце (а также другие звезды этого же удаления от центра Галактики) пролетает в секунду 220 километров.

Из сказанного выше ясно, что звездная система Галактики вращается не как твердое тело, поскольку скорость вращения ее вещества (звезд) уменьшается по мере удаления от центра Галактики. Напомним, что и наше Солнце вращается вокруг своей оси не как твердое тело: чем дальше от экваториальной плоскости, тем скорость вращения вещества Солнца меньше. Собственно, это правило справедливо для всей Солнечной системы. В данном случае можно говорить о вращении всей Солнечной системы в целом. Но при этом периоды обращений отдельных тел этой системы различны. Движение этих тел (планет) определяется законами Кеплера. Согласно третьему закону Кеплера, периоды обращения планет Солнечной системы пропорциональны большим полуосям орбит, возведенным в степень 3/2. Другими словами, угловая скорость вращения Солнечной системы быстро уменьшается по мере увеличения расстояния планеты от Солнца.

Вращение Галактики важно не только само по себе. Оно оказывает влияние на лучевые скорости окрестных звезд, которые лежат в плоскости Галактики. Поясним этот эффект с помощью рисунка. В центре рисунка буквой S обозначено Солнце. Вокруг него имеется 8 соседних звезд (1–8). Ближе к центру Галактики расположены звезды 6,7 и 8. Поэтому они должны двигаться быстрее, чем звезды 1 и 5, а также Солнце. Звезды 2,3 и 4 движутся еще медленнее. Что касается звезды 1, то она движется с такой же скоростью, что и Солнце. Поэтому эффект галактического вращения на ее лучевой скорости не сказывается. Совсем иначе обстоит дело со звездой 2, поскольку она движется медленнее Солнца. Солнце нагоняет звезду 2, и расстояние между ними уменьшается. Поэтому вследствие вращения Галактики звезда 2 будет иметь лучевую скорость, которая направлена к нам. Такую лучевую скорость мы будем называть отрицательной. Что касается звезды 3, то и ее обгоняет Солнце, но их взаимное положение таково, что при этом расстояние между ними не изменяется. Это значит, что на лучевой скорости звезды галактическое вращение не скажется. От звезды 4 Солнце уходит. Расстояние между Солнцем и звездой 4 увеличивается. Это значит, что галактическое вращение придает звезде 4 лучевую скорость, которая направлена перпендикулярно от нас. Такую скорость резонно назвать положительной лучевой скоростью. Теперь рассмотрим ситуацию со звездами 5,6,7 и 8. Легко убедиться, что на лучевые скорости звезд 5 и 7 галактическое вращение не повлияет. У звезды 6 оно вызовет отрицательную, а у звезды 8 положительную лучевые скорости. При этом все направления лучевых скоростей, которые вызваны вращением Галактики не как твердого тела, на рисунке обозначены стрелками.

Приведенная на рисунке 3 схема не является надуманной. Она подтверждена наблюдениями. Величина лучевых скоростей и степень их изменяемости в разных направлениях позволили получить основные данные о вращении Галактики в окрестностях Солнца. Такие же результаты получаются из анализа собственных движений соседних с Солнцем звезд. Эти результаты хорошо согласуются с теми результатами исследований, которые получены с помощью радиометодов. Все сказанное выше относится только к области Галактики в районе Солнца. В других областях Галактики (ближе и дальше от центра Галактики, чем Солнце) угловые скорости обращения Галактики определяются очень неуверенно. Дело в том, что свет далеких звезд, которые лежат в плоскости Галактики, в значительной мере поглощается межзвездной пылью.

Что касается скорости обращения вещества Галактики около ее центра, то эта скорость значительно превосходит все остальные скорости космических движений. Она намного больше и скорос-

Рис. 3. Влияние вращения Галактики на лучевые скорости звезд


тей всех остальных движений, которые может совершать человек. Другими словами, основное движение в окружающем нас мире — это участие во вращении около центра Галактики. Скорость этого движения равна 220 км/с.









 


Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх